有没有比这个方法更简洁的方法来获取整数的位数?

int numDigits = String.valueOf(1000).length();

当前回答

使用Java

int nDigits = Math.floor(Math.log10(Math.abs(the_integer))) + 1;

使用import java.lang.Math.*;一开始

使用C

int nDigits = floor(log10(abs(the_integer))) + 1;

在开始时使用include math.h

其他回答

由于以10为基数的整数的位数只是1 + truncate(log10(number)),您可以这样做:

public class Test {

    public static void main(String[] args) {

        final int number = 1234;
        final int digits = 1 + (int)Math.floor(Math.log10(number));

        System.out.println(digits);
    }
}

被编辑是因为我的最后一次编辑修复了代码示例,但没有修复描述。

简单的解决方案:

public class long_length {
    long x,l=1,n;
    for (n=10;n<x;n*=10){
        if (x/n!=0){
            l++;
        }
    }
    System.out.print(l);
}

计算int变量中数字数的有效方法之一是定义一个方法digitsCounter,其中包含所需数量的条件语句。 方法很简单,我们将检查n位数字所在的每个范围: 0: 9为个位数 10:99是两位数 100: 999是三位数等等……

    static int digitsCounter(int N)
    {   // N = Math.abs(N); // if `N` is -ve
        if (0 <= N && N <= 9) return 1;
        if (10 <= N && N <= 99) return 2;
        if (100 <= N && N <= 999) return 3;
        if (1000 <= N && N <= 9999) return 4;
        if (10000 <= N && N <= 99999) return 5;
        if (100000 <= N && N <= 999999) return 6;
        if (1000000 <= N && N <= 9999999) return 7;
        if (10000000 <= N && N <= 99999999) return 8;
        if (100000000 <= N && N <= 999999999) return 9;
        return 10;
    }

一种更干净的方法是取消下限检查,因为如果我们按顺序进行,就不需要下限检查了。

    static int digitsCounter(int N)
    {
        N = N < 0 ? -N : N;
        if (N <= 9) return 1;
        if (N <= 99) return 2;
        if (N <= 999) return 3;
        if (N <= 9999) return 4;
        if (N <= 99999) return 5;
        if (N <= 999999) return 6;
        if (N <= 9999999) return 7;
        if (N <= 99999999) return 8;
        if (N <= 999999999) return 9;
        return 10; // Max possible digits in an 'int'
    }

我看到有人使用String库,甚至使用Integer类。这没什么问题,但是求位数的算法并不复杂。我在这个例子中使用的是long类型,但它也可以用于int类型。

 private static int getLength(long num) {

    int count = 1;

    while (num >= 10) {
        num = num / 10;
        count++;
    }

    return count;
}

现在还不能留言,所以我会单独回复。

基于对数的解决方案不能计算非常大的长整数的正确位数,例如:

long n = 99999999999999999L;

// correct answer: 17
int numberOfDigits = String.valueOf(n).length();

// incorrect answer: 18
int wrongNumberOfDigits = (int) (Math.log10(n) + 1); 

基于对数的解决方案在大整数中计算不正确的位数