有没有比这个方法更简洁的方法来获取整数的位数?

int numDigits = String.valueOf(1000).length();

当前回答

对数是你的朋友:

int n = 1000;
int length = (int)(Math.log10(n)+1);

NB:只对n >有效0。

其他回答

Marian的解决方案适用于长类型数字(高达9,223,372,036,854,775,807),以防有人想要复制和粘贴它。 在程序中,我写了这个,因为10000以内的数字更有可能,所以我为它们做了一个特定的分支。不管怎样,这不会有太大的区别。

public static int numberOfDigits (long n) {     
    // Guessing 4 digit numbers will be more probable.
    // They are set in the first branch.
    if (n < 10000L) { // from 1 to 4
        if (n < 100L) { // 1 or 2
            if (n < 10L) {
                return 1;
            } else {
                return 2;
            }
        } else { // 3 or 4
            if (n < 1000L) {
                return 3;
            } else {
                return 4;
            }
        }           
    } else  { // from 5 a 20 (albeit longs can't have more than 18 or 19)
        if (n < 1000000000000L) { // from 5 to 12
            if (n < 100000000L) { // from 5 to 8
                if (n < 1000000L) { // 5 or 6
                    if (n < 100000L) {
                        return 5;
                    } else {
                        return 6;
                    }
                } else { // 7 u 8
                    if (n < 10000000L) {
                        return 7;
                    } else {
                        return 8;
                    }
                }
            } else { // from 9 to 12
                if (n < 10000000000L) { // 9 or 10
                    if (n < 1000000000L) {
                        return 9;
                    } else {
                        return 10;
                    }
                } else { // 11 or 12
                    if (n < 100000000000L) {
                        return 11;
                    } else {
                        return 12;
                    }
                }
            }
        } else { // from 13 to ... (18 or 20)
            if (n < 10000000000000000L) { // from 13 to 16
                if (n < 100000000000000L) { // 13 or 14
                    if (n < 10000000000000L) { 
                        return 13;
                    } else {
                        return 14;
                    }
                } else { // 15 or 16
                    if (n < 1000000000000000L) {
                        return 15;
                    } else {
                        return 16;
                    }
                }
            } else { // from 17 to ...¿20?
                if (n < 1000000000000000000L) { // 17 or 18
                    if (n < 100000000000000000L) {
                        return 17;
                    } else {
                        return 18;
                    }
                } else { // 19? Can it be?
                    // 10000000000000000000L is'nt a valid long.
                    return 19;
                }
            }
        }
    }
}

出于好奇,我试着对其进行基准测试……

import org.junit.Test;
import static org.junit.Assert.*;


public class TestStack1306727 {

    @Test
    public void bench(){
        int number=1000;
        int a= String.valueOf(number).length();
        int b= 1 + (int)Math.floor(Math.log10(number));

        assertEquals(a,b);
        int i=0;
        int s=0;
        long startTime = System.currentTimeMillis();
        for(i=0, s=0; i< 100000000; i++){
            a= String.valueOf(number).length();
            s+=a;
        }
        long stopTime = System.currentTimeMillis();
        long runTime = stopTime - startTime;
        System.out.println("Run time 1: " + runTime);
        System.out.println("s: "+s);
        startTime = System.currentTimeMillis();
        for(i=0,s=0; i< 100000000; i++){
            b= number==0?1:(1 + (int)Math.floor(Math.log10(Math.abs(number))));
            s+=b;
        }
        stopTime = System.currentTimeMillis();
        runTime = stopTime - startTime;
        System.out.println("Run time 2: " + runTime);
        System.out.println("s: "+s);
        assertEquals(a,b);


    }
}

结果如下:

Run time 1: 6765
s: 400000000
Run time 2: 6000
s: 400000000

现在我想知道我的基准测试是否真的意味着什么,但我确实在基准测试本身的多次运行中得到了一致的结果(一毫秒内的变化)……:)看起来这是无用的尝试和优化…


编辑:根据ptomli的注释,我在上面的代码中用' I '替换'number',并在5次运行的bench中得到以下结果:

Run time 1: 11500
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11485
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11469
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11500
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11484
s: 788888890
Run time 2: 8547
s: 788888890

我还没有看到基于乘法的解决方案。对数、除法和基于字符串的解决方案将在数百万个测试用例中变得相当笨拙,所以这里有一个int型的解决方案:

/**
 * Returns the number of digits needed to represents an {@code int} value in 
 * the given radix, disregarding any sign.
 */
public static int len(int n, int radix) {
    radixCheck(radix); 
    // if you want to establish some limitation other than radix > 2
    n = Math.abs(n);

    int len = 1;
    long min = radix - 1;

    while (n > min) {
        n -= min;
        min *= radix;
        len++;
    }

    return len;
}

以10为基底,这是可行的,因为n本质上是与9,99,999…因为min是9,90,900…n被减去9,90,900…

不幸的是,仅仅因为溢出而替换int的每个实例是不能移植到long的。另一方面,它恰好适用于2垒和10垒(但对于大多数其他垒来说严重失败)。您将需要一个用于溢出点的查找表(或除法测试……)电子战)

/**
 * For radices 2 &le r &le Character.MAX_VALUE (36)
 */
private static long[] overflowpt = {-1, -1, 4611686018427387904L,
    8105110306037952534L, 3458764513820540928L, 5960464477539062500L,
    3948651115268014080L, 3351275184499704042L, 8070450532247928832L,
    1200757082375992968L, 9000000000000000000L, 5054470284992937710L,
    2033726847845400576L, 7984999310198158092L, 2022385242251558912L,
    6130514465332031250L, 1080863910568919040L, 2694045224950414864L,
    6371827248895377408L, 756953702320627062L, 1556480000000000000L,
    3089447554782389220L, 5939011215544737792L, 482121737504447062L,
    839967991029301248L, 1430511474609375000L, 2385723916542054400L,
    3902460517721977146L, 6269893157408735232L, 341614273439763212L,
    513726300000000000L, 762254306892144930L, 1116892707587883008L,
    1617347408439258144L, 2316231840055068672L, 3282671350683593750L,
    4606759634479349760L};

public static int len(long n, int radix) {
    radixCheck(radix);
    n = abs(n);

    int len = 1;
    long min = radix - 1;
    while (n > min) {
        len++;
        if (min == overflowpt[radix]) break;
        n -= min;
        min *= radix;

    }

    return len;
}

简单的解决方案:

public class long_length {
    long x,l=1,n;
    for (n=10;n<x;n*=10){
        if (x/n!=0){
            l++;
        }
    }
    System.out.print(l);
}

由于以10为基数的整数的位数只是1 + truncate(log10(number)),您可以这样做:

public class Test {

    public static void main(String[] args) {

        final int number = 1234;
        final int digits = 1 + (int)Math.floor(Math.log10(number));

        System.out.println(digits);
    }
}

被编辑是因为我的最后一次编辑修复了代码示例,但没有修复描述。