有没有比这个方法更简洁的方法来获取整数的位数?
int numDigits = String.valueOf(1000).length();
有没有比这个方法更简洁的方法来获取整数的位数?
int numDigits = String.valueOf(1000).length();
当前回答
Marian的解决方案适用于长类型数字(高达9,223,372,036,854,775,807),以防有人想要复制和粘贴它。 在程序中,我写了这个,因为10000以内的数字更有可能,所以我为它们做了一个特定的分支。不管怎样,这不会有太大的区别。
public static int numberOfDigits (long n) {
// Guessing 4 digit numbers will be more probable.
// They are set in the first branch.
if (n < 10000L) { // from 1 to 4
if (n < 100L) { // 1 or 2
if (n < 10L) {
return 1;
} else {
return 2;
}
} else { // 3 or 4
if (n < 1000L) {
return 3;
} else {
return 4;
}
}
} else { // from 5 a 20 (albeit longs can't have more than 18 or 19)
if (n < 1000000000000L) { // from 5 to 12
if (n < 100000000L) { // from 5 to 8
if (n < 1000000L) { // 5 or 6
if (n < 100000L) {
return 5;
} else {
return 6;
}
} else { // 7 u 8
if (n < 10000000L) {
return 7;
} else {
return 8;
}
}
} else { // from 9 to 12
if (n < 10000000000L) { // 9 or 10
if (n < 1000000000L) {
return 9;
} else {
return 10;
}
} else { // 11 or 12
if (n < 100000000000L) {
return 11;
} else {
return 12;
}
}
}
} else { // from 13 to ... (18 or 20)
if (n < 10000000000000000L) { // from 13 to 16
if (n < 100000000000000L) { // 13 or 14
if (n < 10000000000000L) {
return 13;
} else {
return 14;
}
} else { // 15 or 16
if (n < 1000000000000000L) {
return 15;
} else {
return 16;
}
}
} else { // from 17 to ...¿20?
if (n < 1000000000000000000L) { // 17 or 18
if (n < 100000000000000000L) {
return 17;
} else {
return 18;
}
} else { // 19? Can it be?
// 10000000000000000000L is'nt a valid long.
return 19;
}
}
}
}
}
其他回答
那简单的数学呢?除以10,直到0。
public static int getSize(long number) {
int count = 0;
while (number > 0) {
count += 1;
number = (number / 10);
}
return count;
}
一个非常简单的解决方案:
public int numLength(int n) {
for (int length = 1; n % Math.pow(10, length) != n; length++) {}
return length;
}
你的基于字符串的解决方案是完全OK的,没有什么“不整洁”的。你必须意识到,在数学上,数字没有长度,也没有数字。长度和数字都是数字在特定基底(即字符串)中的物理表示形式的属性。
基于对数的解决方案在内部完成(部分)与基于字符串的解决方案相同的工作,并且可能(微不足道地)更快,因为它只生成长度而忽略数字。但实际上我并不认为它的意图更明确——这是最重要的因素。
我能试试吗?;)
基于德克的解决方案
final int digits = number==0?1:(1 + (int)Math.floor(Math.log10(Math.abs(number))));
Marian的解决方案适用于长类型数字(高达9,223,372,036,854,775,807),以防有人想要复制和粘贴它。 在程序中,我写了这个,因为10000以内的数字更有可能,所以我为它们做了一个特定的分支。不管怎样,这不会有太大的区别。
public static int numberOfDigits (long n) {
// Guessing 4 digit numbers will be more probable.
// They are set in the first branch.
if (n < 10000L) { // from 1 to 4
if (n < 100L) { // 1 or 2
if (n < 10L) {
return 1;
} else {
return 2;
}
} else { // 3 or 4
if (n < 1000L) {
return 3;
} else {
return 4;
}
}
} else { // from 5 a 20 (albeit longs can't have more than 18 or 19)
if (n < 1000000000000L) { // from 5 to 12
if (n < 100000000L) { // from 5 to 8
if (n < 1000000L) { // 5 or 6
if (n < 100000L) {
return 5;
} else {
return 6;
}
} else { // 7 u 8
if (n < 10000000L) {
return 7;
} else {
return 8;
}
}
} else { // from 9 to 12
if (n < 10000000000L) { // 9 or 10
if (n < 1000000000L) {
return 9;
} else {
return 10;
}
} else { // 11 or 12
if (n < 100000000000L) {
return 11;
} else {
return 12;
}
}
}
} else { // from 13 to ... (18 or 20)
if (n < 10000000000000000L) { // from 13 to 16
if (n < 100000000000000L) { // 13 or 14
if (n < 10000000000000L) {
return 13;
} else {
return 14;
}
} else { // 15 or 16
if (n < 1000000000000000L) {
return 15;
} else {
return 16;
}
}
} else { // from 17 to ...¿20?
if (n < 1000000000000000000L) { // 17 or 18
if (n < 100000000000000000L) {
return 17;
} else {
return 18;
}
} else { // 19? Can it be?
// 10000000000000000000L is'nt a valid long.
return 19;
}
}
}
}
}