有没有比这个方法更简洁的方法来获取整数的位数?
int numDigits = String.valueOf(1000).length();
有没有比这个方法更简洁的方法来获取整数的位数?
int numDigits = String.valueOf(1000).length();
当前回答
Two comments on your benchmark: Java is a complex environment, what with just-in-time compiling and garbage collection and so forth, so to get a fair comparison, whenever I run a benchmark, I always: (a) enclose the two tests in a loop that runs them in sequence 5 or 10 times. Quite often the runtime on the second pass through the loop is quite different from the first. And (b) After each "approach", I do a System.gc() to try to trigger a garbage collection. Otherwise, the first approach might generate a bunch of objects, but not quite enough to force a garbage collection, then the second approach creates a few objects, the heap is exhausted, and garbage collection runs. Then the second approach is "charged" for picking up the garbage left by the first approach. Very unfair!
也就是说,上述两种方法在本例中都没有产生显著差异。
不管有没有这些修改,我得到的结果和你完全不同。当我运行这个时,是的,toString方法给出的运行时间为6400到6600 millis,而log方法给出的运行时间为20,000到20,400 millis。对数方法对我来说不是稍微快一点,而是慢了3倍。
请注意,这两种方法涉及非常不同的代价,所以这并不完全令人震惊:toString方法将创建许多必须清理的临时对象,而log方法需要更密集的计算。因此,可能区别在于,在内存较少的机器上,toString需要更多的垃圾收集回合,而在处理器较慢的机器上,额外的log计算将更加痛苦。
我还尝试了第三种方法。我写了这个小函数:
static int numlength(int n)
{
if (n == 0) return 1;
int l;
n=Math.abs(n);
for (l=0;n>0;++l)
n/=10;
return l;
}
在我的机器上,它运行在1600到1900毫厘之间——不到toString方法的1/3,log方法的1/10。
如果您的数字范围很广,您可以通过开始除以1000或1,000,000来进一步加快速度,以减少循环的次数。我还没玩过。
其他回答
我们可以使用递归循环来实现这一点
public static int digitCount(int numberInput, int i) {
while (numberInput > 0) {
i++;
numberInput = numberInput / 10;
digitCount(numberInput, i);
}
return i;
}
public static void printString() {
int numberInput = 1234567;
int digitCount = digitCount(numberInput, 0);
System.out.println("Count of digit in ["+numberInput+"] is ["+digitCount+"]");
}
Marian的解决方案适用于长类型数字(高达9,223,372,036,854,775,807),以防有人想要复制和粘贴它。 在程序中,我写了这个,因为10000以内的数字更有可能,所以我为它们做了一个特定的分支。不管怎样,这不会有太大的区别。
public static int numberOfDigits (long n) {
// Guessing 4 digit numbers will be more probable.
// They are set in the first branch.
if (n < 10000L) { // from 1 to 4
if (n < 100L) { // 1 or 2
if (n < 10L) {
return 1;
} else {
return 2;
}
} else { // 3 or 4
if (n < 1000L) {
return 3;
} else {
return 4;
}
}
} else { // from 5 a 20 (albeit longs can't have more than 18 or 19)
if (n < 1000000000000L) { // from 5 to 12
if (n < 100000000L) { // from 5 to 8
if (n < 1000000L) { // 5 or 6
if (n < 100000L) {
return 5;
} else {
return 6;
}
} else { // 7 u 8
if (n < 10000000L) {
return 7;
} else {
return 8;
}
}
} else { // from 9 to 12
if (n < 10000000000L) { // 9 or 10
if (n < 1000000000L) {
return 9;
} else {
return 10;
}
} else { // 11 or 12
if (n < 100000000000L) {
return 11;
} else {
return 12;
}
}
}
} else { // from 13 to ... (18 or 20)
if (n < 10000000000000000L) { // from 13 to 16
if (n < 100000000000000L) { // 13 or 14
if (n < 10000000000000L) {
return 13;
} else {
return 14;
}
} else { // 15 or 16
if (n < 1000000000000000L) {
return 15;
} else {
return 16;
}
}
} else { // from 17 to ...¿20?
if (n < 1000000000000000000L) { // 17 or 18
if (n < 100000000000000000L) {
return 17;
} else {
return 18;
}
} else { // 19? Can it be?
// 10000000000000000000L is'nt a valid long.
return 19;
}
}
}
}
}
我能试试吗?;)
基于德克的解决方案
final int digits = number==0?1:(1 + (int)Math.floor(Math.log10(Math.abs(number))));
出于好奇,我试着对其进行基准测试……
import org.junit.Test;
import static org.junit.Assert.*;
public class TestStack1306727 {
@Test
public void bench(){
int number=1000;
int a= String.valueOf(number).length();
int b= 1 + (int)Math.floor(Math.log10(number));
assertEquals(a,b);
int i=0;
int s=0;
long startTime = System.currentTimeMillis();
for(i=0, s=0; i< 100000000; i++){
a= String.valueOf(number).length();
s+=a;
}
long stopTime = System.currentTimeMillis();
long runTime = stopTime - startTime;
System.out.println("Run time 1: " + runTime);
System.out.println("s: "+s);
startTime = System.currentTimeMillis();
for(i=0,s=0; i< 100000000; i++){
b= number==0?1:(1 + (int)Math.floor(Math.log10(Math.abs(number))));
s+=b;
}
stopTime = System.currentTimeMillis();
runTime = stopTime - startTime;
System.out.println("Run time 2: " + runTime);
System.out.println("s: "+s);
assertEquals(a,b);
}
}
结果如下:
Run time 1: 6765 s: 400000000 Run time 2: 6000 s: 400000000
现在我想知道我的基准测试是否真的意味着什么,但我确实在基准测试本身的多次运行中得到了一致的结果(一毫秒内的变化)……:)看起来这是无用的尝试和优化…
编辑:根据ptomli的注释,我在上面的代码中用' I '替换'number',并在5次运行的bench中得到以下结果:
Run time 1: 11500 s: 788888890 Run time 2: 8547 s: 788888890 Run time 1: 11485 s: 788888890 Run time 2: 8547 s: 788888890 Run time 1: 11469 s: 788888890 Run time 2: 8547 s: 788888890 Run time 1: 11500 s: 788888890 Run time 2: 8547 s: 788888890 Run time 1: 11484 s: 788888890 Run time 2: 8547 s: 788888890
你的基于字符串的解决方案是完全OK的,没有什么“不整洁”的。你必须意识到,在数学上,数字没有长度,也没有数字。长度和数字都是数字在特定基底(即字符串)中的物理表示形式的属性。
基于对数的解决方案在内部完成(部分)与基于字符串的解决方案相同的工作,并且可能(微不足道地)更快,因为它只生成长度而忽略数字。但实际上我并不认为它的意图更明确——这是最重要的因素。