有没有比这个方法更简洁的方法来获取整数的位数?

int numDigits = String.valueOf(1000).length();

当前回答

我在看了Integer.java源代码后写了这个函数。

private static int stringSize(int x) {
    final int[] sizeTable = {9, 99, 999, 9_999, 99_999, 999_999, 9_999_999,
            99_999_999, 999_999_999, Integer.MAX_VALUE};
    for (int i = 0; ; ++i) {
        if (x <= sizeTable[i]) {
            return i + 1;
        }
    }
}

其他回答

或者相反,你可以检查这个数字是否大于或小于所需的数字。

    public void createCard(int cardNumber, int cardStatus, int customerId) throws SQLException {
    if(cardDao.checkIfCardExists(cardNumber) == false) {
        if(cardDao.createCard(cardNumber, cardStatus, customerId) == true) {
            System.out.println("Card created successfully");
        } else {

        }
    } else {
        System.out.println("Card already exists, try with another Card Number");
        do {
            System.out.println("Enter your new Card Number: ");
            scan = new Scanner(System.in);
            int inputCardNumber = scan.nextInt();
            cardNumber = inputCardNumber;
        } while(cardNumber < 95000000);
        cardDao.createCard(cardNumber, cardStatus, customerId);
    }
}

}

玛丽安的解决方案,现在是三元:

 public int len(int n){
        return (n<100000)?((n<100)?((n<10)?1:2):(n<1000)?3:((n<10000)?4:5)):((n<10000000)?((n<1000000)?6:7):((n<100000000)?8:((n<1000000000)?9:10)));
    }

因为我们可以。

使用Java

int nDigits = Math.floor(Math.log10(Math.abs(the_integer))) + 1;

使用import java.lang.Math.*;一开始

使用C

int nDigits = floor(log10(abs(the_integer))) + 1;

在开始时使用include math.h

Marian的解决方案适用于长类型数字(高达9,223,372,036,854,775,807),以防有人想要复制和粘贴它。 在程序中,我写了这个,因为10000以内的数字更有可能,所以我为它们做了一个特定的分支。不管怎样,这不会有太大的区别。

public static int numberOfDigits (long n) {     
    // Guessing 4 digit numbers will be more probable.
    // They are set in the first branch.
    if (n < 10000L) { // from 1 to 4
        if (n < 100L) { // 1 or 2
            if (n < 10L) {
                return 1;
            } else {
                return 2;
            }
        } else { // 3 or 4
            if (n < 1000L) {
                return 3;
            } else {
                return 4;
            }
        }           
    } else  { // from 5 a 20 (albeit longs can't have more than 18 or 19)
        if (n < 1000000000000L) { // from 5 to 12
            if (n < 100000000L) { // from 5 to 8
                if (n < 1000000L) { // 5 or 6
                    if (n < 100000L) {
                        return 5;
                    } else {
                        return 6;
                    }
                } else { // 7 u 8
                    if (n < 10000000L) {
                        return 7;
                    } else {
                        return 8;
                    }
                }
            } else { // from 9 to 12
                if (n < 10000000000L) { // 9 or 10
                    if (n < 1000000000L) {
                        return 9;
                    } else {
                        return 10;
                    }
                } else { // 11 or 12
                    if (n < 100000000000L) {
                        return 11;
                    } else {
                        return 12;
                    }
                }
            }
        } else { // from 13 to ... (18 or 20)
            if (n < 10000000000000000L) { // from 13 to 16
                if (n < 100000000000000L) { // 13 or 14
                    if (n < 10000000000000L) { 
                        return 13;
                    } else {
                        return 14;
                    }
                } else { // 15 or 16
                    if (n < 1000000000000000L) {
                        return 15;
                    } else {
                        return 16;
                    }
                }
            } else { // from 17 to ...¿20?
                if (n < 1000000000000000000L) { // 17 or 18
                    if (n < 100000000000000000L) {
                        return 17;
                    } else {
                        return 18;
                    }
                } else { // 19? Can it be?
                    // 10000000000000000000L is'nt a valid long.
                    return 19;
                }
            }
        }
    }
}

我还没有看到基于乘法的解决方案。对数、除法和基于字符串的解决方案将在数百万个测试用例中变得相当笨拙,所以这里有一个int型的解决方案:

/**
 * Returns the number of digits needed to represents an {@code int} value in 
 * the given radix, disregarding any sign.
 */
public static int len(int n, int radix) {
    radixCheck(radix); 
    // if you want to establish some limitation other than radix > 2
    n = Math.abs(n);

    int len = 1;
    long min = radix - 1;

    while (n > min) {
        n -= min;
        min *= radix;
        len++;
    }

    return len;
}

以10为基底,这是可行的,因为n本质上是与9,99,999…因为min是9,90,900…n被减去9,90,900…

不幸的是,仅仅因为溢出而替换int的每个实例是不能移植到long的。另一方面,它恰好适用于2垒和10垒(但对于大多数其他垒来说严重失败)。您将需要一个用于溢出点的查找表(或除法测试……)电子战)

/**
 * For radices 2 &le r &le Character.MAX_VALUE (36)
 */
private static long[] overflowpt = {-1, -1, 4611686018427387904L,
    8105110306037952534L, 3458764513820540928L, 5960464477539062500L,
    3948651115268014080L, 3351275184499704042L, 8070450532247928832L,
    1200757082375992968L, 9000000000000000000L, 5054470284992937710L,
    2033726847845400576L, 7984999310198158092L, 2022385242251558912L,
    6130514465332031250L, 1080863910568919040L, 2694045224950414864L,
    6371827248895377408L, 756953702320627062L, 1556480000000000000L,
    3089447554782389220L, 5939011215544737792L, 482121737504447062L,
    839967991029301248L, 1430511474609375000L, 2385723916542054400L,
    3902460517721977146L, 6269893157408735232L, 341614273439763212L,
    513726300000000000L, 762254306892144930L, 1116892707587883008L,
    1617347408439258144L, 2316231840055068672L, 3282671350683593750L,
    4606759634479349760L};

public static int len(long n, int radix) {
    radixCheck(radix);
    n = abs(n);

    int len = 1;
    long min = radix - 1;
    while (n > min) {
        len++;
        if (min == overflowpt[radix]) break;
        n -= min;
        min *= radix;

    }

    return len;
}