受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

Javascript解决NxN矩阵与运行时O(N^2)和内存O(1)

  function rotate90(matrix){
    var length = matrix.length
    for(var row = 0; row < (length / 2); row++){
      for(var col = row; col < ( length - 1 - row); col++){
        var tmpVal = matrix[row][col];
        for(var i = 0; i < 4; i++){
          var rowSwap = col;
          var colSwap = (length - 1) - row;
          var poppedVal = matrix[rowSwap][colSwap];
          matrix[rowSwap][colSwap] = tmpVal;
          tmpVal = poppedVal;
          col = colSwap;
          row = rowSwap;
        }
      }
    }
  }

其他回答

这是一个Javascript解决方案:

const transpose = m => m[0].map((x,i) => m.map(x => x[i]));

a: // original matrix
123
456
789

transpose(a).reverse(); // rotate 90 degrees counter clockwise 
369
258
147

transpose(a.slice().reverse()); // rotate 90 degrees clockwise 
741
852
963

transpose(transpose(a.slice().reverse()).slice().reverse())
// rotate 180 degrees 
987
654
321

这是一个如今被高估的面试问题。

我的建议是:不要让面试官用他们关于解决这个问题的疯狂建议把你弄糊涂了。使用白板绘制输入数组的索引,然后绘制输出数组的索引。旋转前后的列分度示例如下:

30 --> 00
20 --> 01
10 --> 02
00 --> 03

31 --> 10
21 --> 11
11 --> 12
01 --> 13

注意旋转后的数字模式。

下面提供了一个简洁的Java解决方案。经过测试,它是有效的:

 Input:
    M A C P 
    B N L D 
    Y E T S 
    I W R Z 

    Output:
    I Y B M 
    W E N A 
    R T L C 
    Z S D P 

/**
 * (c) @author "G A N MOHIM"
 * Oct 3, 2015
 * RotateArrayNintyDegree.java
 */
package rotatearray;

public class RotateArrayNintyDegree {

    public char[][] rotateArrayNinetyDegree(char[][] input) {
        int k; // k is used to generate index for output array

        char[][] output = new char[input.length] [input[0].length];

        for (int i = 0; i < input.length; i++) {
            k = 0;
            for (int j = input.length-1; j >= 0; j--) {
                output[i][k] = input[j][i]; // note how i is used as column index, and j as row
                k++;
            }
        }

        return output;
    }

    public void printArray(char[][] charArray) {
        for (int i = 0; i < charArray.length; i++) {
            for (int j = 0; j < charArray[0].length; j++) {
                System.out.print(charArray[i][j] + " ");
            }
            System.out.println();
        }


    }

    public static void main(String[] args) {
        char[][] input = 
                { {'M', 'A', 'C', 'P'},
                  {'B', 'N', 'L', 'D'},
                  {'Y', 'E', 'T', 'S'},
                  {'I', 'W', 'R', 'Z'}
                };

        char[][] output = new char[input.length] [input[0].length];

        RotateArrayNintyDegree rotationObj = new RotateArrayNintyDegree();
        rotationObj.printArray(input);

        System.out.println("\n");
        output = rotationObj.rotateArrayNinetyDegree(input);
        rotationObj.printArray(output);

    }

}

我的c#示例代码的伟大算法发送@dimple:

/* Author: Dudi,
 * http://www.tutorialspoint.com/compile_csharp_online.php?PID=0Bw_CjBb95KQMYm5qU3VjVGNuZFU */

using System.IO;
using System;

class Program
{
    static void Main()
    {
        Console.WriteLine("Rotating this matrix by 90+ degree:");

        int[,] values=new int[3,3]{{1,2,3}, {4,5,6}, {7,8,9}};
        //int[,] values=new int[4,4]{{101,102,103, 104}, {105,106, 107,108}, {109, 110, 111, 112}, {113, 114, 115, 116}};

        print2dArray(ref values);
        transpose2dArray(ref values);
        //print2dArray(ref values);
        reverse2dArray(ref values);
        Console.WriteLine("Output:");
        print2dArray(ref values);
    }

    static void print2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);    
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen; m++){
                Console.Write(matrix[n,m] +"\t");
            }
            Console.WriteLine();        
        }
        Console.WriteLine();
    }

    static void transpose2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);    
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen; m++){
                if(n>m){
                    int tmp = matrix[n,m];
                    matrix[n,m] = matrix[m,n];
                    matrix[m,n] = tmp;
                }
            }
        }
    }

    static void reverse2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen/2; m++){                
                int tmp = matrix[n,m];
                matrix[n,m] = matrix[n, mLen-1-m];
                matrix[n,mLen-1-m] = tmp;
            }
        }
    }
}

/*
Rotating this matrix by 90+ degree:                                                                                                                                             
1       2       3                                                                                                                                                               
4       5       6                                                                                                                                                               
7       8       9                                                                                                                                                               

Output:                                                                                                                                                                         
7       4       1                                                                                                                                                               
8       5       2                                                                                                                                                               
9       6       3  
*/

在原地顺时针90度旋转使用矢量矢量..

 #include<iostream>
 #include<vector>
 #include<algorithm>
 using namespace std;
 //Rotate a Matrix by 90 degrees
void rotateMatrix(vector<vector<int> > &matrix){
   int n=matrix.size();
   for(int i=0;i<n;i++){
    for(int j=i+1;j<n;j++){
        swap(matrix[i][j],matrix[j][i]);
    }
 }
     for(int i=0;i<n;i++){
        reverse(matrix[i].begin(),matrix[i].end());
       }
   }

    int main(){

   int n;
   cout<<"enter the size of the matrix:"<<endl;
     while (cin >> n) {
    vector< vector<int> > m;
      cout<<"enter the elements"<<endl;
    for (int i = 0; i < n; i++) {
        m.push_back(vector<int>(n));
        for (int j = 0; j < n; j++)
            scanf("%d", &m[i][j]);
    }
      cout<<"the rotated matrix is:"<<endl;
      rotateMatrix(m);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++)
            cout << m[i][j] << ' ';
        cout << endl;
    }
   }
   return 0;
 }

哦,伙计。我一直认为这是一个“我很无聊,我能思考什么”的谜题。我想出了我的原地换位码,但到了这里发现你的和我的几乎一模一样……啊,好。这里是Ruby版本。

require 'pp'
n = 10
a = []
n.times { a << (1..n).to_a }

pp a

0.upto(n/2-1) do |i|
  i.upto(n-i-2) do |j|
    tmp             = a[i][j]
    a[i][j]         = a[n-j-1][i]
    a[n-j-1][i]     = a[n-i-1][n-j-1]
    a[n-i-1][n-j-1] = a[j][n-i-1]
    a[j][n-i-1]     = tmp
  end
end

pp a