受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

Javascript解决NxN矩阵与运行时O(N^2)和内存O(1)

  function rotate90(matrix){
    var length = matrix.length
    for(var row = 0; row < (length / 2); row++){
      for(var col = row; col < ( length - 1 - row); col++){
        var tmpVal = matrix[row][col];
        for(var i = 0; i < 4; i++){
          var rowSwap = col;
          var colSwap = (length - 1) - row;
          var poppedVal = matrix[rowSwap][colSwap];
          matrix[rowSwap][colSwap] = tmpVal;
          tmpVal = poppedVal;
          col = colSwap;
          row = rowSwap;
        }
      }
    }
  }

其他回答

哦,伙计。我一直认为这是一个“我很无聊,我能思考什么”的谜题。我想出了我的原地换位码,但到了这里发现你的和我的几乎一模一样……啊,好。这里是Ruby版本。

require 'pp'
n = 10
a = []
n.times { a << (1..n).to_a }

pp a

0.upto(n/2-1) do |i|
  i.upto(n-i-2) do |j|
    tmp             = a[i][j]
    a[i][j]         = a[n-j-1][i]
    a[n-j-1][i]     = a[n-i-1][n-j-1]
    a[n-i-1][n-j-1] = a[j][n-i-1]
    a[j][n-i-1]     = tmp
  end
end

pp a

PHP:

<?php    
$a = array(array(1,2,3,4),array(5,6,7,8),array(9,0,1,2),array(3,4,5,6));
$b = array(); //result

while(count($a)>0)
{
    $b[count($a[0])-1][] = array_shift($a[0]);
    if (count($a[0])==0)
    {
         array_shift($a);
    }
}

从PHP5.6开始,数组转位可以通过一个狡猾的array_map()调用来执行。换句话说,列被转换为行。

代码:(演示)

$array = [
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 0, 1, 2],
    [3, 4, 5, 6]
];
$transposed = array_map(null, ...$array);

美元转置:

[
    [1, 5, 9, 3],
    [2, 6, 0, 4],
    [3, 7, 1, 5],
    [4, 8, 2, 6]
]
    public static void rotateMatrix(int[,] matrix)
    {
        //C#, to rotate an N*N matrix in place
        int n = matrix.GetLength(0);
        int layers =  n / 2;
        int temp, temp2;

        for (int i = 0; i < layers; i++) // for a 5 * 5 matrix, layers will be 2, since at layer three there would be only one element, (2,2), and we do not need to rotate it with itself 
        {
            int offset = 0;
            while (offset < n - 2 * i - 1)
            {
                // top right <- top left 
                temp = matrix[i + offset, n - i - 1]; //top right value when offset is zero
                matrix[i + offset, n - i - 1] = matrix[i, i + offset];   

                //bottom right <- top right 
                temp2 = matrix[n - i - 1, n - i - 1 - offset]; //bottom right value when offset is zero
                matrix[n - i - 1, n - i - 1 - offset] = temp;  

                //bottom left <- bottom right 
                temp = matrix[n - i - 1 - offset, i];
                matrix[n - i - 1 - offset, i] = temp2;  

                //top left <- bottom left 
                matrix[i, i + offset] = temp; 

                offset++;
            }
        }
    }

c#代码将[n,m] 2D数组向右旋转90度

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace MatrixProject
{
    // mattrix class

    class Matrix{
        private int rows;
        private int cols;
        private int[,] matrix;

        public Matrix(int n){
            this.rows = n;
            this.cols = n;
            this.matrix = new int[this.rows,this.cols];

        }

        public Matrix(int n,int m){
            this.rows = n;
            this.cols = m;

            this.matrix = new int[this.rows,this.cols];
        }

        public void Show()
        {
            for (var i = 0; i < this.rows; i++)
            {
                for (var j = 0; j < this.cols; j++) {
                    Console.Write("{0,3}", this.matrix[i, j]);
                }
                Console.WriteLine();
            }                
        }

        public void ReadElements()
        {
           for (var i = 0; i < this.rows; i++)
                for (var j = 0; j < this.cols; j++)
                {
                    Console.Write("element[{0},{1}]=",i,j);
                    this.matrix[i, j] = Convert.ToInt32(Console.ReadLine());
                }            
        }


        // rotate [n,m] 2D array by 90 deg right
        public void Rotate90DegRight()
        {

            // create a mirror of current matrix
            int[,] mirror = this.matrix;

            // create a new matrix
            this.matrix = new int[this.cols, this.rows];

            for (int i = 0; i < this.rows; i++)
            {
                for (int j = 0; j < this.cols; j++)
                {
                    this.matrix[j, this.rows - i - 1] = mirror[i, j];
                }
            }

            // replace cols count with rows count
            int tmp = this.rows;
            this.rows = this.cols;
            this.cols = tmp;           
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            Matrix myMatrix = new Matrix(3,4);
            Console.WriteLine("Enter matrix elements:");
            myMatrix.ReadElements();
            Console.WriteLine("Matrix elements are:");
            myMatrix.Show();
            myMatrix.Rotate90DegRight();
            Console.WriteLine("Matrix rotated at 90 deg are:");
            myMatrix.Show();
            Console.ReadLine();
        }
    }
}

结果:

    Enter matrix elements:
    element[0,0]=1
    element[0,1]=2
    element[0,2]=3
    element[0,3]=4
    element[1,0]=5
    element[1,1]=6
    element[1,2]=7
    element[1,3]=8
    element[2,0]=9
    element[2,1]=10
    element[2,2]=11
    element[2,3]=12
    Matrix elements are:
      1  2  3  4
      5  6  7  8
      9 10 11 12
    Matrix rotated at 90 deg are:
      9  5  1
     10  6  2
     11  7  3
     12  8  4

时间- O(N),空间- O(1)

public void rotate(int[][] matrix) {
    int n = matrix.length;
    for (int i = 0; i < n / 2; i++) {
        int last = n - 1 - i;
        for (int j = i; j < last; j++) {
            int top = matrix[i][j];
            matrix[i][j] = matrix[last - j][i];
            matrix[last - j][i] = matrix[last][last - j];
            matrix[last][last - j] = matrix[j][last];
            matrix[j][last] = top;
        }
    }
}