受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
Javascript解决NxN矩阵与运行时O(N^2)和内存O(1)
function rotate90(matrix){
var length = matrix.length
for(var row = 0; row < (length / 2); row++){
for(var col = row; col < ( length - 1 - row); col++){
var tmpVal = matrix[row][col];
for(var i = 0; i < 4; i++){
var rowSwap = col;
var colSwap = (length - 1) - row;
var poppedVal = matrix[rowSwap][colSwap];
matrix[rowSwap][colSwap] = tmpVal;
tmpVal = poppedVal;
col = colSwap;
row = rowSwap;
}
}
}
}
其他回答
哦,伙计。我一直认为这是一个“我很无聊,我能思考什么”的谜题。我想出了我的原地换位码,但到了这里发现你的和我的几乎一模一样……啊,好。这里是Ruby版本。
require 'pp'
n = 10
a = []
n.times { a << (1..n).to_a }
pp a
0.upto(n/2-1) do |i|
i.upto(n-i-2) do |j|
tmp = a[i][j]
a[i][j] = a[n-j-1][i]
a[n-j-1][i] = a[n-i-1][n-j-1]
a[n-i-1][n-j-1] = a[j][n-i-1]
a[j][n-i-1] = tmp
end
end
pp a
PHP:
<?php
$a = array(array(1,2,3,4),array(5,6,7,8),array(9,0,1,2),array(3,4,5,6));
$b = array(); //result
while(count($a)>0)
{
$b[count($a[0])-1][] = array_shift($a[0]);
if (count($a[0])==0)
{
array_shift($a);
}
}
从PHP5.6开始,数组转位可以通过一个狡猾的array_map()调用来执行。换句话说,列被转换为行。
代码:(演示)
$array = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 0, 1, 2],
[3, 4, 5, 6]
];
$transposed = array_map(null, ...$array);
美元转置:
[
[1, 5, 9, 3],
[2, 6, 0, 4],
[3, 7, 1, 5],
[4, 8, 2, 6]
]
public static void rotateMatrix(int[,] matrix)
{
//C#, to rotate an N*N matrix in place
int n = matrix.GetLength(0);
int layers = n / 2;
int temp, temp2;
for (int i = 0; i < layers; i++) // for a 5 * 5 matrix, layers will be 2, since at layer three there would be only one element, (2,2), and we do not need to rotate it with itself
{
int offset = 0;
while (offset < n - 2 * i - 1)
{
// top right <- top left
temp = matrix[i + offset, n - i - 1]; //top right value when offset is zero
matrix[i + offset, n - i - 1] = matrix[i, i + offset];
//bottom right <- top right
temp2 = matrix[n - i - 1, n - i - 1 - offset]; //bottom right value when offset is zero
matrix[n - i - 1, n - i - 1 - offset] = temp;
//bottom left <- bottom right
temp = matrix[n - i - 1 - offset, i];
matrix[n - i - 1 - offset, i] = temp2;
//top left <- bottom left
matrix[i, i + offset] = temp;
offset++;
}
}
}
c#代码将[n,m] 2D数组向右旋转90度
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace MatrixProject
{
// mattrix class
class Matrix{
private int rows;
private int cols;
private int[,] matrix;
public Matrix(int n){
this.rows = n;
this.cols = n;
this.matrix = new int[this.rows,this.cols];
}
public Matrix(int n,int m){
this.rows = n;
this.cols = m;
this.matrix = new int[this.rows,this.cols];
}
public void Show()
{
for (var i = 0; i < this.rows; i++)
{
for (var j = 0; j < this.cols; j++) {
Console.Write("{0,3}", this.matrix[i, j]);
}
Console.WriteLine();
}
}
public void ReadElements()
{
for (var i = 0; i < this.rows; i++)
for (var j = 0; j < this.cols; j++)
{
Console.Write("element[{0},{1}]=",i,j);
this.matrix[i, j] = Convert.ToInt32(Console.ReadLine());
}
}
// rotate [n,m] 2D array by 90 deg right
public void Rotate90DegRight()
{
// create a mirror of current matrix
int[,] mirror = this.matrix;
// create a new matrix
this.matrix = new int[this.cols, this.rows];
for (int i = 0; i < this.rows; i++)
{
for (int j = 0; j < this.cols; j++)
{
this.matrix[j, this.rows - i - 1] = mirror[i, j];
}
}
// replace cols count with rows count
int tmp = this.rows;
this.rows = this.cols;
this.cols = tmp;
}
}
class Program
{
static void Main(string[] args)
{
Matrix myMatrix = new Matrix(3,4);
Console.WriteLine("Enter matrix elements:");
myMatrix.ReadElements();
Console.WriteLine("Matrix elements are:");
myMatrix.Show();
myMatrix.Rotate90DegRight();
Console.WriteLine("Matrix rotated at 90 deg are:");
myMatrix.Show();
Console.ReadLine();
}
}
}
结果:
Enter matrix elements:
element[0,0]=1
element[0,1]=2
element[0,2]=3
element[0,3]=4
element[1,0]=5
element[1,1]=6
element[1,2]=7
element[1,3]=8
element[2,0]=9
element[2,1]=10
element[2,2]=11
element[2,3]=12
Matrix elements are:
1 2 3 4
5 6 7 8
9 10 11 12
Matrix rotated at 90 deg are:
9 5 1
10 6 2
11 7 3
12 8 4
时间- O(N),空间- O(1)
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n / 2; i++) {
int last = n - 1 - i;
for (int j = i; j < last; j++) {
int top = matrix[i][j];
matrix[i][j] = matrix[last - j][i];
matrix[last - j][i] = matrix[last][last - j];
matrix[last][last - j] = matrix[j][last];
matrix[j][last] = top;
}
}
}