我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

下面是另一个简单的概念,可以解决O(N)中的问题。

        int[] arr = new int[] {1, 2, 3, 4, 5};
        int[] outArray = new int[arr.length]; 
        for(int i=0;i<arr.length;i++){
            int res=Arrays.stream(arr).reduce(1, (a, b) -> a * b);
            outArray[i] = res/arr[i];
        }
        System.out.println(Arrays.toString(outArray));

其他回答

ruby的解决方案

a = [1,2,3,4]
result = []
a.each {|x| result.push( (a-[x]).reject(&:zero?).reduce(:*)) }
puts result

给你,简单干净的解决方案,复杂度为O(N):

int[] a = {1,2,3,4,5};
    int[] r = new int[a.length];
    int x = 1;
    r[0] = 1;
    for (int i=1;i<a.length;i++){
        r[i]=r[i-1]*a[i-1];
    }
    for (int i=a.length-1;i>0;i--){
        x=x*a[i];
        r[i-1]=x*r[i-1];
    }
    for (int i=0;i<r.length;i++){
        System.out.println(r[i]);
    }

这是ptyhon版本

  # This solution use O(n) time and O(n) space
  def productExceptSelf(self, nums):
    """
    :type nums: List[int]
    :rtype: List[int]
    """
    N = len(nums)
    if N == 0: return

    # Initialzie list of 1, size N
    l_prods, r_prods = [1]*N, [1]*N

    for i in range(1, N):
      l_prods[i] = l_prods[i-1] * nums[i-1]

    for i in reversed(range(N-1)):
      r_prods[i] = r_prods[i+1] * nums[i+1]

    result = [x*y for x,y in zip(l_prods,r_prods)]
    return result

  # This solution use O(n) time and O(1) space
  def productExceptSelfSpaceOptimized(self, nums):
    """
    :type nums: List[int]
    :rtype: List[int]
    """
    N = len(nums)
    if N == 0: return

    # Initialzie list of 1, size N
    result = [1]*N

    for i in range(1, N):
      result[i] = result[i-1] * nums[i-1]

    r_prod = 1
    for i in reversed(range(N)):
      result[i] *= r_prod
      r_prod *= nums[i]

    return result

下面是我用现代c++编写的解决方案。它使用std::transform,很容易记住。

在线代码(wandbox)。

#include<algorithm>
#include<iostream>
#include<vector>

using namespace std;

vector<int>& multiply_up(vector<int>& v){
    v.insert(v.begin(),1);
    transform(v.begin()+1, v.end()
             ,v.begin()
             ,v.begin()+1
             ,[](auto const& a, auto const& b) { return b*a; }
             );
    v.pop_back();
    return v;
}

int main() {
    vector<int> v = {1,2,3,4,5};
    auto vr = v;

    reverse(vr.begin(),vr.end());
    multiply_up(v);
    multiply_up(vr);
    reverse(vr.begin(),vr.end());

    transform(v.begin(),v.end()
             ,vr.begin()
             ,v.begin()
             ,[](auto const& a, auto const& b) { return b*a; }
             );

    for(auto& i: v) cout << i << " "; 
}

下面是一个使用c#的函数式示例:

            Func<long>[] backwards = new Func<long>[input.Length];
            Func<long>[] forwards = new Func<long>[input.Length];

            for (int i = 0; i < input.Length; ++i)
            {
                var localIndex = i;
                backwards[i] = () => (localIndex > 0 ? backwards[localIndex - 1]() : 1) * input[localIndex];
                forwards[i] = () => (localIndex < input.Length - 1 ? forwards[localIndex + 1]() : 1) * input[localIndex];
            }

            var output = new long[input.Length];
            for (int i = 0; i < input.Length; ++i)
            {
                if (0 == i)
                {
                    output[i] = forwards[i + 1]();
                }
                else if (input.Length - 1 == i)
                {
                    output[i] = backwards[i - 1]();
                }
                else
                {
                    output[i] = forwards[i + 1]() * backwards[i - 1]();
                }
            }

我不完全确定这是O(n),因为所创建的Funcs是半递归的,但我的测试似乎表明它在时间上是O(n)。