我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。
给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。
输入:[1,2,3,4,5]
输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)]
= [120, 60, 40, 30, 24]
你必须在O(N)中不使用除法来做这个。
最近有人问我这个问题,虽然我不能得到O(N),但我有一个不同的方法(不幸的是O(N²)),但我想无论如何都要分享。
首先转换为列表<Integer>。
遍历原始数组array.length()次。
使用while循环乘下一组所需的数字:
while (temp < list.size() - 1) {
res *= list.get(temp);
temp++;
}
然后将res添加到一个新数组(当然,您已经在前面声明了),然后将数组[i]的值添加到List,依此类推。
我知道这不会有太大的用处,但这是我在面试的压力下想到的:)
int[] array = new int[]{1, 2, 3, 4, 5};
List<Integer> list = Arrays.stream(array).boxed().collect(Collectors.toList());
int[] newarray = new int[array.length];
int res = 1;
for (int i = 0; i < array.length; i++) {
int temp = i;
while (temp < list.size() - 1) {
res *= list.get(temp);
temp++;
}
newarray[i] = res;
list.add(array[i]);
res = 1;
}
输出:[24,120,60,40,30]
以下是线性O(n)时间内的简单Scala版本:
def getProductEff(in:Seq[Int]):Seq[Int] = {
//create a list which has product of every element to the left of this element
val fromLeft = in.foldLeft((1, Seq.empty[Int]))((ac, i) => (i * ac._1, ac._2 :+ ac._1))._2
//create a list which has product of every element to the right of this element, which is the same as the previous step but in reverse
val fromRight = in.reverse.foldLeft((1,Seq.empty[Int]))((ac,i) => (i * ac._1,ac._2 :+ ac._1))._2.reverse
//merge the two list by product at index
in.indices.map(i => fromLeft(i) * fromRight(i))
}
这是可行的,因为本质上答案是一个数组,它是左右所有元素的乘积。
我们可以先从列表中排除nums[j](其中j != i),然后得到其余部分的乘积;下面是python解决这个难题的方法:
from functools import reduce
def products(nums):
return [ reduce(lambda x,y: x * y, nums[:i] + nums[i+1:]) for i in range(len(nums)) ]
print(products([1, 2, 3, 4, 5]))
[out]
[120, 60, 40, 30, 24]