我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

这里是Scala中的完整代码:

val list1 = List(1, 2, 3, 4, 5)
for (elem <- list1) println(list1.filter(_ != elem) reduceLeft(_*_))

这将打印出以下内容:

120
60
40
30
24

程序将过滤掉当前的elem (_ != elem);并使用reducleft方法将新列表相乘。我认为这将是O(n)如果你使用scala视图或迭代器进行惰性计算。

其他回答

左旅行->右和保持保存产品。称之为过去。- > O (n) 旅行右->左保持产品。称之为未来。- > O (n) 结果[i] =过去[i-1] *将来[i+1] -> O(n) 过去[-1]= 1;和未来(n + 1) = 1;

O(n)

将Michael Anderson的解决方案翻译成Haskell:

otherProducts xs = zipWith (*) below above

     where below = scanl (*) 1 $ init xs

           above = tail $ scanr (*) 1 xs

技巧:

使用以下方法:

public int[] calc(int[] params) {

int[] left = new int[n-1]
in[] right = new int[n-1]

int fac1 = 1;
int fac2 = 1;
for( int i=0; i<n; i++ ) {
    fac1 = fac1 * params[i];
    fac2 = fac2 * params[n-i];
    left[i] = fac1;
    right[i] = fac2; 
}
fac = 1;

int[] results = new int[n];
for( int i=0; i<n; i++ ) {
    results[i] = left[i] * right[i];
}

是的,我确定我错过了一些I -1而不是I,但这是解决它的方法。

根据Billz的回答——抱歉我不能评论,但这里是一个正确处理列表中重复项的scala版本,可能是O(n):

val list1 = List(1, 7, 3, 3, 4, 4)
val view = list1.view.zipWithIndex map { x => list1.view.patch(x._2, Nil, 1).reduceLeft(_*_)}
view.force

返回:

List(1008, 144, 336, 336, 252, 252)

O(n)时间的简洁解:

对于每个元素,计算在它之前出现的所有元素的乘积,并将其存储在数组“pre”中。 对于每个元素,计算该元素之后所有元素的乘积,并将其存储在数组“post”中 为元素i创建一个最终数组result, 结果[i] = pre[i-1]*post[i+1];