我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。
给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。
输入:[1,2,3,4,5]
输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)]
= [120, 60, 40, 30, 24]
你必须在O(N)中不使用除法来做这个。
最近有人问我这个问题,虽然我不能得到O(N),但我有一个不同的方法(不幸的是O(N²)),但我想无论如何都要分享。
首先转换为列表<Integer>。
遍历原始数组array.length()次。
使用while循环乘下一组所需的数字:
while (temp < list.size() - 1) {
res *= list.get(temp);
temp++;
}
然后将res添加到一个新数组(当然,您已经在前面声明了),然后将数组[i]的值添加到List,依此类推。
我知道这不会有太大的用处,但这是我在面试的压力下想到的:)
int[] array = new int[]{1, 2, 3, 4, 5};
List<Integer> list = Arrays.stream(array).boxed().collect(Collectors.toList());
int[] newarray = new int[array.length];
int res = 1;
for (int i = 0; i < array.length; i++) {
int temp = i;
while (temp < list.size() - 1) {
res *= list.get(temp);
temp++;
}
newarray[i] = res;
list.add(array[i]);
res = 1;
}
输出:[24,120,60,40,30]
下面是我使用python的简洁解决方案。
from functools import reduce
def excludeProductList(nums_):
after = [reduce(lambda x, y: x*y, nums_[i:]) for i in range(1, len(nums_))] + [1]
before = [1] + [reduce(lambda x, y: x*y, nums_[:i]) for i in range(1, len(nums_))]
zippedList = list(zip(before, after))
finalList = list(map(lambda x: x[0]*x[1], zippedList))
return finalList
这是我的代码:
int multiply(int a[],int n,int nextproduct,int i)
{
int prevproduct=1;
if(i>=n)
return prevproduct;
prevproduct=multiply(a,n,nextproduct*a[i],i+1);
printf(" i=%d > %d\n",i,prevproduct*nextproduct);
return prevproduct*a[i];
}
int main()
{
int a[]={2,4,1,3,5};
multiply(a,5,1,0);
return 0;
}
多基因润滑剂方法的一个解释是:
诀窍是构造数组(在4个元素的情况下):
{ 1, a[0], a[0]*a[1], a[0]*a[1]*a[2], }
{ a[1]*a[2]*a[3], a[2]*a[3], a[3], 1, }
这两种方法都可以在O(n)中分别从左右边开始。
然后,将两个数组逐个元素相乘,得到所需的结果。
我的代码看起来是这样的:
int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
products_below[i] = p;
p *= a[i];
}
int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
products_above[i] = p;
p *= a[i];
}
int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
products[i] = products_below[i] * products_above[i];
}
如果你也需要空间中的解是O(1),你可以这样做(在我看来不太清楚):
int a[N] // This is the input
int products[N];
// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
products[i] = p;
p *= a[i];
}
// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
products[i] *= p;
p *= a[i];
}