我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

import java.util.Arrays;

public class Pratik
{
    public static void main(String[] args)
    {
        int[] array = {2, 3, 4, 5, 6};      //  OUTPUT: 360  240  180  144  120
        int[] products = new int[array.length];
        arrayProduct(array, products);
        System.out.println(Arrays.toString(products));
    }

    public static void arrayProduct(int array[], int products[])
    {
        double sum = 0, EPSILON = 1e-9;

        for(int i = 0; i < array.length; i++)
            sum += Math.log(array[i]);

        for(int i = 0; i < array.length; i++)
            products[i] = (int) (EPSILON + Math.exp(sum - Math.log(array[i])));
    }
}

输出:

[360, 240, 180, 144, 120]

时间复杂度:O(n) 空间复杂度:O(1)

其他回答

下面是我尝试用Java来解决这个问题。抱歉格式不规范,但代码有很多重复,这是我能做的最好的,使它可读。

import java.util.Arrays;

public class Products {
    static int[] products(int... nums) {
        final int N = nums.length;
        int[] prods = new int[N];
        Arrays.fill(prods, 1);
        for (int
           i = 0, pi = 1    ,  j = N-1, pj = 1  ;
           (i < N)         && (j >= 0)          ;
           pi *= nums[i++]  ,  pj *= nums[j--]  )
        {
           prods[i] *= pi   ;  prods[j] *= pj   ;
        }
        return prods;
    }
    public static void main(String[] args) {
        System.out.println(
            Arrays.toString(products(1, 2, 3, 4, 5))
        ); // prints "[120, 60, 40, 30, 24]"
    }
}

循环不变量为pi = nums[0] * nums[1] *..* nums[N-2] *..num [j + 1]。左边的i部分是“前缀”逻辑,右边的j部分是“后缀”逻辑。


递归一行程序

Jasmeet给出了一个(漂亮的!)递归解;我把它变成了这样(可怕!)Java一行程序。它进行就地修改,堆栈中有O(N)个临时空间。

static int multiply(int[] nums, int p, int n) {
    return (n == nums.length) ? 1
      : nums[n] * (p = multiply(nums, nums[n] * (nums[n] = p), n + 1))
          + 0*(nums[n] *= p);
}

int[] arr = {1,2,3,4,5};
multiply(arr, 1, 0);
System.out.println(Arrays.toString(arr));
// prints "[120, 60, 40, 30, 24]"
public static void main(String[] args) {
    int[] arr = { 1, 2, 3, 4, 5 };
    int[] result = { 1, 1, 1, 1, 1 };
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < i; j++) {
            result[i] *= arr[j];

        }
        for (int k = arr.length - 1; k > i; k--) {
            result[i] *= arr[k];
        }
    }
    for (int i : result) {
        System.out.println(i);
    }
}

我想出了这个解决方案,我发现它很清楚,你觉得呢!?

在这里添加我的javascript解决方案,因为我没有发现任何人建议这样做。 除法是什么,除了数从另一个数中得到一个数的次数吗?我计算了整个数组的乘积,然后遍历每个元素,并减去当前元素直到0:

//No division operation allowed
// keep substracting divisor from dividend, until dividend is zero or less than divisor
function calculateProducsExceptCurrent_NoDivision(input){
  var res = [];
  var totalProduct = 1;
  //calculate the total product
  for(var i = 0; i < input.length; i++){
    totalProduct = totalProduct * input[i];
  }
  //populate the result array by "dividing" each value
  for(var i = 0; i < input.length; i++){
    var timesSubstracted = 0;
    var divisor = input[i];
    var dividend = totalProduct;
    while(divisor <= dividend){
      dividend = dividend - divisor;
      timesSubstracted++;
    }
    res.push(timesSubstracted);
  }
  return res;
}

下面是Ruby中的一行程序解决方案。

全国矿工工会。映射{|n| (num - [n]).inject(:*)}

int[] b = new int[] { 1, 2, 3, 4, 5 };            
int j;
for(int i=0;i<b.Length;i++)
{
  int prod = 1;
  int s = b[i];
  for(j=i;j<b.Length-1;j++)
  {
    prod = prod * b[j + 1];
  }
int pos = i;    
while(pos!=-1)
{
  pos--;
  if(pos!=-1)
     prod = prod * b[pos];                    
}
Console.WriteLine("\n Output is {0}",prod);
}