我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。
给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。
输入:[1,2,3,4,5]
输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)]
= [120, 60, 40, 30, 24]
你必须在O(N)中不使用除法来做这个。
还有一个O(N^(3/2))非最优解。不过,这很有趣。
首先预处理大小为N^0.5的每个部分乘法(这在O(N)时间复杂度中完成)。然后,计算每个数字的其他值的倍数可以在2*O(N^0.5)时间内完成(为什么?因为您只需要将其他((N^0.5) - 1)数字的最后一个元素相乘,并将结果与属于当前数字组的((N^0.5) - 1)数字相乘。对每一个数都这样做,可以得到O(N^(3/2))时间。
例子:
4, 6, 7, 2, 3, 1, 9, 5, 8
部分结果:
4*6*7 = 168
2*3*1 = 6
9*5*8 = 360
要计算3的值,需要将其他组的值乘以168*360,然后乘以2*1。
下面是我用现代c++编写的解决方案。它使用std::transform,很容易记住。
在线代码(wandbox)。
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
vector<int>& multiply_up(vector<int>& v){
v.insert(v.begin(),1);
transform(v.begin()+1, v.end()
,v.begin()
,v.begin()+1
,[](auto const& a, auto const& b) { return b*a; }
);
v.pop_back();
return v;
}
int main() {
vector<int> v = {1,2,3,4,5};
auto vr = v;
reverse(vr.begin(),vr.end());
multiply_up(v);
multiply_up(vr);
reverse(vr.begin(),vr.end());
transform(v.begin(),v.end()
,vr.begin()
,v.begin()
,[](auto const& a, auto const& b) { return b*a; }
);
for(auto& i: v) cout << i << " ";
}