我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

将Michael Anderson的解决方案翻译成Haskell:

otherProducts xs = zipWith (*) below above

     where below = scanl (*) 1 $ init xs

           above = tail $ scanr (*) 1 xs

其他回答

{-
Recursive solution using sqrt(n) subsets. Runs in O(n).

Recursively computes the solution on sqrt(n) subsets of size sqrt(n). 
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.

Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n

Suppose that T(n) ≤ cn in O(n).

T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
    ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
    ≤ c*n + c*sqrt(n) + n
    ≤ (2c+1)*n
    ∈ O(n)

Note that ceiling(sqrt(n)) can be computed using a binary search 
and O(logn) iterations, if the sqrt instruction is not permitted.
-}

otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
    where 
      n = length a

      -- Subset size. Require that 1 < s < n.
      s = ceiling $ sqrt $ fromIntegral n

      solvedSubsets = map otherProducts subsets
      subsetOtherProducts = otherProducts $ map product subsets

      subsets = reverse $ loop a []
          where loop [] acc = acc
                loop a acc = loop (drop s a) ((take s a):acc)

给你,简单干净的解决方案,复杂度为O(N):

int[] a = {1,2,3,4,5};
    int[] r = new int[a.length];
    int x = 1;
    r[0] = 1;
    for (int i=1;i<a.length;i++){
        r[i]=r[i-1]*a[i-1];
    }
    for (int i=a.length-1;i>0;i--){
        x=x*a[i];
        r[i-1]=x*r[i-1];
    }
    for (int i=0;i<r.length;i++){
        System.out.println(r[i]);
    }

O(n)时间的简洁解:

对于每个元素,计算在它之前出现的所有元素的乘积,并将其存储在数组“pre”中。 对于每个元素,计算该元素之后所有元素的乘积,并将其存储在数组“post”中 为元素i创建一个最终数组result, 结果[i] = pre[i-1]*post[i+1];

    int[] arr1 = { 1, 2, 3, 4, 5 };
    int[] product = new int[arr1.Length];              

    for (int i = 0; i < arr1.Length; i++)
    {
        for (int j = 0; j < product.Length; j++)
        {
            if (i != j)
            {
                product[j] = product[j] == 0 ? arr1[i] : product[j] * arr1[i];
            }
        }
    }
def productify(arr, prod, i):
    if i < len(arr):
        prod.append(arr[i - 1] * prod[i - 1]) if i > 0 else prod.append(1)
        retval = productify(arr, prod, i + 1)
        prod[i] *= retval
        return retval * arr[i]
    return 1

if __name__ == "__main__":
    arr = [1, 2, 3, 4, 5]
    prod = []
    productify(arr, prod, 0)
    print(prod)