我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
对于所有32位值(注意,-0是-2147483648)
int rotate(int x)
{
static const int split = INT_MAX / 2 + 1;
static const int negativeSplit = INT_MIN / 2 + 1;
if (x == INT_MAX)
return INT_MIN;
if (x == INT_MIN)
return x + 1;
if (x >= split)
return x + 1 - INT_MIN;
if (x >= 0)
return INT_MAX - x;
if (x >= negativeSplit)
return INT_MIN - x + 1;
return split -(negativeSplit - x);
}
基本上需要将每个-x=>x=>-x循环与y=>-y=>y循环配对。所以我把裂口的两边配对。
例如,对于4位整数:
0 => 7 => -8 => -7 => 0
1 => 6 => -1 => -6 => 1
2 => 5 => -2 => -5 => 2
3 => 4 => -3 => -4 => 3
其他回答
事实上,我并没有试图给出问题本身的解决方案,但我有几点意见,因为问题表明,提出这个问题是(工作?)面试的一部分:
我会先问“为什么需要这样的函数?这是什么更大的问题?”而不是试图当场解决实际提出的问题。这表明了我是如何思考和解决这样的问题的。谁知道?这甚至可能是在一次采访中首先提出这个问题的真正原因。如果答案是“没关系,假设它是需要的,并告诉我如何设计这个功能。”我会继续这样做。然后,我将编写我将使用的C#测试用例代码(显而易见:从int.MinValue到int.MaxValue的循环,对于该范围内的每个n调用f(f(n)),并检查结果是-n),告诉我将使用测试驱动开发来获得这样的函数。只有当面试官继续要求我解决所提出的问题时,我才真正开始在面试过程中胡乱写下伪代码,试图得到某种答案。然而,如果面试官能说明公司的情况,我真的不认为我会跳下去接受这份工作。。。
哦,这个答案假设面试是针对一个与C#编程相关的职位。如果面试的是与数学相关的职位,那当然是一个愚蠢的答案
Python 2.6:
f = lambda n: (n % 2 * n or -n) + (n > 0) - (n < 0)
我意识到这对讨论毫无帮助,但我无法抗拒。
我还没有看其他答案,我假设已经彻底讨论了按位技术。
我想我会在C++中想出一些邪恶的东西,希望不会上当受骗:
struct ImplicitlyConvertibleToInt
{
operator int () const { return 0; }
};
int f(const ImplicitlyConvertibleToInt &) { return 0; }
ImplicitlyConvertibleToInt f(int & n)
{
n = 0; // The problem specification didn't say n was const
return ImplicitlyConvertibleToInt();
}
整个ImplicitlyConvertableToInt类型和重载是必需的,因为临时变量不能绑定到非常量引用。
当然,现在来看它,f(n)是否在-n之前执行是不确定的。
对于这种程度的邪恶,也许一个更好的解决方案是:
struct ComparesTrueToInt
{
ComparesTrueToInt(int) { } // implicit construction from int
};
bool operator == (ComparesTrueToInt, int) const { return true; }
ComparesTrueToInt f(ComparesTrueToInt ct) { return ComparesTrueToInt(); }
int f(int n)
{
static long counter=0;
counter++;
if(counter%2==0)
return -n;
else
return n;
}
Java脚本
function f(n) {
return typeof n === "number" ?
function() {return -n} :
n();
}