我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
我有另一个解决方案,它可以在一半时间内工作:
def f(x):
if random.randrange(0, 2):
return -x
return x
其他回答
return x ^ ((x%2) ? 1 : -INT_MAX);
斯卡拉:
def f(x: Any): Any = x match {
case i: Int => new { override def hashCode = -i }
case i @ _ => i.hashCode
}
在Java中也是如此:
public static Object f(final Object x) {
if(x instanceof Integer) {
return new Object() {
@Override
public int hashCode() {
return -(Integer)x;
}
};
}
return x.hashCode();
}
没有人说它必须是无国籍的。
int32 f(int32 x) {
static bool idempotent = false;
if (!idempotent) {
idempotent = true;
return -x;
} else {
return x;
}
}
作弊,但不如很多例子。更糟糕的是,查看堆栈以查看调用者的地址是否为-f,但这将更具可移植性(虽然不是线程安全的……线程安全版本将使用TLS)。更邪恶的是:
int32 f (int32 x) {
static int32 answer = -x;
return answer;
}
当然,对于MIN_INT32的情况,这两种方法都不太有效,但除非允许返回更宽的类型,否则对此您几乎无能为力。
上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。
红宝石:
def f( n )
return 0 unless n != 0
( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
f#中的简单解决方案(不使用“技巧”)
let rec f n =
if n = 0 then 0
elif n > 0 then
if (f (n - 1) <> n) then n + 1
else -(n - 1)
else
if (f (-(n - 1)) = n) then n - 1
else -(n + 1)