我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。


当前回答

伪代码基于@biziclop的答案:

只使用基本结构:变量、数组、if、while和for 函数getNode(id)和getChildren(id) 假设已知节点数N


注意:我从1开始使用数组索引,而不是0。

广度优先

S = Array(N)
S[1] = 1; // root id
cur = 1;
last = 1
while cur <= last
    id = S[cur]
    node = getNode(id)
    children = getChildren(id)

    n = length(children)
    for i = 1..n
        S[ last+i ] = children[i]
    end
    last = last+n
    cur = cur+1

    visit(node)
end

深度优先

S = Array(N)
S[1] = 1; // root id
cur = 1;
while cur > 0
    id = S[cur]
    node = getNode(id)
    children = getChildren(id)

    n = length(children)
    for i = 1..n
        // assuming children are given left-to-right
        S[ cur+i-1 ] = children[ n-i+1 ] 

        // otherwise
        // S[ cur+i-1 ] = children[i] 
    end
    cur = cur+n-1

    visit(node)
end

其他回答

使用堆栈来跟踪节点

Stack<Node> s;

s.prepend(tree.head);

while(!s.empty) {
    Node n = s.poll_front // gets first node

    // do something with q?

    for each child of n: s.prepend(child)

}

如果你有指向父节点的指针,你可以在没有额外内存的情况下完成。

def dfs(root):
    node = root
    while True:
        visit(node)
        if node.first_child:
            node = node.first_child      # walk down
        else:
            while not node.next_sibling:
                if node is root:
                    return
                node = node.parent       # walk up ...
            node = node.next_sibling     # ... and right

注意,如果子节点存储为数组而不是通过兄弟指针,那么下一个兄弟节点可以通过以下方式找到:

def next_sibling(node):
    try:
        i =    node.parent.child_nodes.index(node)
        return node.parent.child_nodes[i+1]
    except (IndexError, AttributeError):
        return None
Stack<Node> stack = new Stack<>();
stack.add(root);
while (!stack.isEmpty()) {
    Node node = stack.pop();
    System.out.print(node.getData() + " ");

    Node right = node.getRight();
    if (right != null) {
        stack.push(right);
    }

    Node left = node.getLeft();
    if (left != null) {
        stack.push(left);
    }
}

你可以使用堆栈。我用邻接矩阵实现了图:

void DFS(int current){
    for(int i=1; i<N; i++) visit_table[i]=false;
    myStack.push(current);
    cout << current << "  ";
    while(!myStack.empty()){
        current = myStack.top();
        for(int i=0; i<N; i++){
            if(AdjMatrix[current][i] == 1){
                if(visit_table[i] == false){ 
                    myStack.push(i);
                    visit_table[i] = true;
                    cout << i << "  ";
                }
                break;
            }
            else if(!myStack.empty())
                myStack.pop();
        }
    }
}

基于biziclops的ES6实现很棒的答案:

root = { text: "root", children: [{ text: "c1", children: [{ text: "c11" }, { text: "c12" }] }, { text: "c2", children: [{ text: "c21" }, { text: "c22" }] }, ] } console.log("DFS:") DFS(root, node => node.children, node => console.log(node.text)); console.log("BFS:") BFS(root, node => node.children, node => console.log(node.text)); function BFS(root, getChildren, visit) { let nodesToVisit = [root]; while (nodesToVisit.length > 0) { const currentNode = nodesToVisit.shift(); nodesToVisit = [ ...nodesToVisit, ...(getChildren(currentNode) || []), ]; visit(currentNode); } } function DFS(root, getChildren, visit) { let nodesToVisit = [root]; while (nodesToVisit.length > 0) { const currentNode = nodesToVisit.shift(); nodesToVisit = [ ...(getChildren(currentNode) || []), ...nodesToVisit, ]; visit(currentNode); } }