我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。


当前回答

PreOrderTraversal is same as DFS in binary tree. You can do the same recursion 
taking care of Stack as below.

    public void IterativePreOrder(Tree root)
            {
                if (root == null)
                    return;
                Stack s<Tree> = new Stack<Tree>();
                s.Push(root);
                while (s.Count != 0)
                {
                    Tree b = s.Pop();
                    Console.Write(b.Data + " ");
                    if (b.Right != null)
                        s.Push(b.Right);
                    if (b.Left != null)
                        s.Push(b.Left);

                }
            }

一般的逻辑是,将一个节点(从根开始)推入Stack, Pop()它和Print()值。然后,如果它有子节点(左和右),将它们推入堆栈-先推右,这样你就会先访问左子节点(在访问节点本身之后)。当stack为空()时,您将访问Pre-Order中的所有节点。

其他回答

你可以使用一个堆栈来保存尚未访问的节点:

stack.push(root)
while !stack.isEmpty() do
    node = stack.pop()
    for each node.childNodes do
        stack.push(stack)
    endfor
    // …
endwhile

完整的示例工作代码,没有堆栈:

import java.util.*;

class Graph {
private List<List<Integer>> adj;

Graph(int numOfVertices) {
    this.adj = new ArrayList<>();
    for (int i = 0; i < numOfVertices; ++i)
        adj.add(i, new ArrayList<>());
}

void addEdge(int v, int w) {
    adj.get(v).add(w); // Add w to v's list.
}

void DFS(int v) {
    int nodesToVisitIndex = 0;
    List<Integer> nodesToVisit = new ArrayList<>();
    nodesToVisit.add(v);
    while (nodesToVisitIndex < nodesToVisit.size()) {
        Integer nextChild= nodesToVisit.get(nodesToVisitIndex++);// get the node and mark it as visited node by inc the index over the element.
        for (Integer s : adj.get(nextChild)) {
            if (!nodesToVisit.contains(s)) {
                nodesToVisit.add(nodesToVisitIndex, s);// add the node to the HEAD of the unvisited nodes list.
            }
        }
        System.out.println(nextChild);
    }
}

void BFS(int v) {
    int nodesToVisitIndex = 0;
    List<Integer> nodesToVisit = new ArrayList<>();
    nodesToVisit.add(v);
    while (nodesToVisitIndex < nodesToVisit.size()) {
        Integer nextChild= nodesToVisit.get(nodesToVisitIndex++);// get the node and mark it as visited node by inc the index over the element.
        for (Integer s : adj.get(nextChild)) {
            if (!nodesToVisit.contains(s)) {
                nodesToVisit.add(s);// add the node to the END of the unvisited node list.
            }
        }
        System.out.println(nextChild);
    }
}

public static void main(String args[]) {
    Graph g = new Graph(5);

    g.addEdge(0, 1);
    g.addEdge(0, 2);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(2, 3);
    g.addEdge(3, 3);
    g.addEdge(3, 1);
    g.addEdge(3, 4);

    System.out.println("Breadth First Traversal- starting from vertex 2:");
    g.BFS(2);
    System.out.println("Depth First Traversal- starting from vertex 2:");
    g.DFS(2);
}}

输出: 宽度优先遍历-从顶点2开始: 2 0 3. 1 4 深度优先遍历-从顶点2开始: 2 3. 4 1 0

Java中的DFS迭代:

//DFS: Iterative
private Boolean DFSIterative(Node root, int target) {
    if (root == null)
        return false;
    Stack<Node> _stack = new Stack<Node>();
    _stack.push(root);
    while (_stack.size() > 0) {
        Node temp = _stack.peek();
        if (temp.data == target)
            return true;
        if (temp.left != null)
            _stack.push(temp.left);
        else if (temp.right != null)
            _stack.push(temp.right);
        else
            _stack.pop();
    }
    return false;
}
Stack<Node> stack = new Stack<>();
stack.add(root);
while (!stack.isEmpty()) {
    Node node = stack.pop();
    System.out.print(node.getData() + " ");

    Node right = node.getRight();
    if (right != null) {
        stack.push(right);
    }

    Node left = node.getLeft();
    if (left != null) {
        stack.push(left);
    }
}

http://www.youtube.com/watch?v=zLZhSSXAwxI

刚刚看了这个视频,并提出了实施方案。这对我来说似乎很容易理解。请评论一下。

visited_node={root}
stack.push(root)
while(!stack.empty){
  unvisited_node = get_unvisited_adj_nodes(stack.top());
  If (unvisited_node!=null){
     stack.push(unvisited_node);  
     visited_node+=unvisited_node;
  }
  else
     stack.pop()
}