我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。


当前回答

假设您希望在访问图中的每个节点时执行通知。简单的递归实现是:

void DFSRecursive(Node n, Set<Node> visited) {
  visited.add(n);
  for (Node x : neighbors_of(n)) {  // iterate over all neighbors
    if (!visited.contains(x)) {
      DFSRecursive(x, visited);
    }
  }
  OnVisit(n);  // callback to say node is finally visited, after all its non-visited neighbors
}

好的,现在你需要一个基于堆栈的实现,因为你的例子不起作用。例如,复杂的图形可能会导致程序的堆栈崩溃,您需要实现一个非递归版本。最大的问题是知道何时发出通知。

下面的伪代码可以工作(为了可读性,Java和c++混合使用):

void DFS(Node root) {
  Set<Node> visited;
  Set<Node> toNotify;  // nodes we want to notify

  Stack<Node> stack;
  stack.add(root);
  toNotify.add(root);  // we won't pop nodes from this until DFS is done
  while (!stack.empty()) {
    Node current = stack.pop();
    visited.add(current);
    for (Node x : neighbors_of(current)) {
      if (!visited.contains(x)) {
        stack.add(x);
        toNotify.add(x);
      }
    }
  }
  // Now issue notifications. toNotifyStack might contain duplicates (will never
  // happen in a tree but easily happens in a graph)
  Set<Node> notified;
  while (!toNotify.empty()) {
  Node n = toNotify.pop();
  if (!toNotify.contains(n)) {
    OnVisit(n);  // issue callback
    toNotify.add(n);
  }
}

它看起来很复杂,但发出通知所需的额外逻辑存在,因为您需要以相反的访问顺序通知- DFS从根开始,但在最后通知它,不像BFS实现非常简单。

看看下面的图表: 节点是s t v w。 有向边为: S ->t, S ->v, t->w, v->w, v->t。 运行你自己的DFS实现,访问节点的顺序必须是: W t v s 一个笨拙的DFS实现可能会首先通知t,这表明存在错误。DFS的递归实现总是最后到达w。

其他回答

伪代码基于@biziclop的答案:

只使用基本结构:变量、数组、if、while和for 函数getNode(id)和getChildren(id) 假设已知节点数N


注意:我从1开始使用数组索引,而不是0。

广度优先

S = Array(N)
S[1] = 1; // root id
cur = 1;
last = 1
while cur <= last
    id = S[cur]
    node = getNode(id)
    children = getChildren(id)

    n = length(children)
    for i = 1..n
        S[ last+i ] = children[i]
    end
    last = last+n
    cur = cur+1

    visit(node)
end

深度优先

S = Array(N)
S[1] = 1; // root id
cur = 1;
while cur > 0
    id = S[cur]
    node = getNode(id)
    children = getChildren(id)

    n = length(children)
    for i = 1..n
        // assuming children are given left-to-right
        S[ cur+i-1 ] = children[ n-i+1 ] 

        // otherwise
        // S[ cur+i-1 ] = children[i] 
    end
    cur = cur+n-1

    visit(node)
end
PreOrderTraversal is same as DFS in binary tree. You can do the same recursion 
taking care of Stack as below.

    public void IterativePreOrder(Tree root)
            {
                if (root == null)
                    return;
                Stack s<Tree> = new Stack<Tree>();
                s.Push(root);
                while (s.Count != 0)
                {
                    Tree b = s.Pop();
                    Console.Write(b.Data + " ");
                    if (b.Right != null)
                        s.Push(b.Right);
                    if (b.Left != null)
                        s.Push(b.Left);

                }
            }

一般的逻辑是,将一个节点(从根开始)推入Stack, Pop()它和Print()值。然后,如果它有子节点(左和右),将它们推入堆栈-先推右,这样你就会先访问左子节点(在访问节点本身之后)。当stack为空()时,您将访问Pre-Order中的所有节点。

http://www.youtube.com/watch?v=zLZhSSXAwxI

刚刚看了这个视频,并提出了实施方案。这对我来说似乎很容易理解。请评论一下。

visited_node={root}
stack.push(root)
while(!stack.empty){
  unvisited_node = get_unvisited_adj_nodes(stack.top());
  If (unvisited_node!=null){
     stack.push(unvisited_node);  
     visited_node+=unvisited_node;
  }
  else
     stack.pop()
}

如果你有指向父节点的指针,你可以在没有额外内存的情况下完成。

def dfs(root):
    node = root
    while True:
        visit(node)
        if node.first_child:
            node = node.first_child      # walk down
        else:
            while not node.next_sibling:
                if node is root:
                    return
                node = node.parent       # walk up ...
            node = node.next_sibling     # ... and right

注意,如果子节点存储为数组而不是通过兄弟指针,那么下一个兄弟节点可以通过以下方式找到:

def next_sibling(node):
    try:
        i =    node.parent.child_nodes.index(node)
        return node.parent.child_nodes[i+1]
    except (IndexError, AttributeError):
        return None

Java中的DFS迭代:

//DFS: Iterative
private Boolean DFSIterative(Node root, int target) {
    if (root == null)
        return false;
    Stack<Node> _stack = new Stack<Node>();
    _stack.push(root);
    while (_stack.size() > 0) {
        Node temp = _stack.peek();
        if (temp.data == target)
            return true;
        if (temp.left != null)
            _stack.push(temp.left);
        else if (temp.right != null)
            _stack.push(temp.right);
        else
            _stack.pop();
    }
    return false;
}