我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。
当前回答
http://www.youtube.com/watch?v=zLZhSSXAwxI
刚刚看了这个视频,并提出了实施方案。这对我来说似乎很容易理解。请评论一下。
visited_node={root}
stack.push(root)
while(!stack.empty){
unvisited_node = get_unvisited_adj_nodes(stack.top());
If (unvisited_node!=null){
stack.push(unvisited_node);
visited_node+=unvisited_node;
}
else
stack.pop()
}
其他回答
PreOrderTraversal is same as DFS in binary tree. You can do the same recursion
taking care of Stack as below.
public void IterativePreOrder(Tree root)
{
if (root == null)
return;
Stack s<Tree> = new Stack<Tree>();
s.Push(root);
while (s.Count != 0)
{
Tree b = s.Pop();
Console.Write(b.Data + " ");
if (b.Right != null)
s.Push(b.Right);
if (b.Left != null)
s.Push(b.Left);
}
}
一般的逻辑是,将一个节点(从根开始)推入Stack, Pop()它和Print()值。然后,如果它有子节点(左和右),将它们推入堆栈-先推右,这样你就会先访问左子节点(在访问节点本身之后)。当stack为空()时,您将访问Pre-Order中的所有节点。
假设您希望在访问图中的每个节点时执行通知。简单的递归实现是:
void DFSRecursive(Node n, Set<Node> visited) {
visited.add(n);
for (Node x : neighbors_of(n)) { // iterate over all neighbors
if (!visited.contains(x)) {
DFSRecursive(x, visited);
}
}
OnVisit(n); // callback to say node is finally visited, after all its non-visited neighbors
}
好的,现在你需要一个基于堆栈的实现,因为你的例子不起作用。例如,复杂的图形可能会导致程序的堆栈崩溃,您需要实现一个非递归版本。最大的问题是知道何时发出通知。
下面的伪代码可以工作(为了可读性,Java和c++混合使用):
void DFS(Node root) {
Set<Node> visited;
Set<Node> toNotify; // nodes we want to notify
Stack<Node> stack;
stack.add(root);
toNotify.add(root); // we won't pop nodes from this until DFS is done
while (!stack.empty()) {
Node current = stack.pop();
visited.add(current);
for (Node x : neighbors_of(current)) {
if (!visited.contains(x)) {
stack.add(x);
toNotify.add(x);
}
}
}
// Now issue notifications. toNotifyStack might contain duplicates (will never
// happen in a tree but easily happens in a graph)
Set<Node> notified;
while (!toNotify.empty()) {
Node n = toNotify.pop();
if (!toNotify.contains(n)) {
OnVisit(n); // issue callback
toNotify.add(n);
}
}
它看起来很复杂,但发出通知所需的额外逻辑存在,因为您需要以相反的访问顺序通知- DFS从根开始,但在最后通知它,不像BFS实现非常简单。
看看下面的图表: 节点是s t v w。 有向边为: S ->t, S ->v, t->w, v->w, v->t。 运行你自己的DFS实现,访问节点的顺序必须是: W t v s 一个笨拙的DFS实现可能会首先通知t,这表明存在错误。DFS的递归实现总是最后到达w。
完整的示例工作代码,没有堆栈:
import java.util.*;
class Graph {
private List<List<Integer>> adj;
Graph(int numOfVertices) {
this.adj = new ArrayList<>();
for (int i = 0; i < numOfVertices; ++i)
adj.add(i, new ArrayList<>());
}
void addEdge(int v, int w) {
adj.get(v).add(w); // Add w to v's list.
}
void DFS(int v) {
int nodesToVisitIndex = 0;
List<Integer> nodesToVisit = new ArrayList<>();
nodesToVisit.add(v);
while (nodesToVisitIndex < nodesToVisit.size()) {
Integer nextChild= nodesToVisit.get(nodesToVisitIndex++);// get the node and mark it as visited node by inc the index over the element.
for (Integer s : adj.get(nextChild)) {
if (!nodesToVisit.contains(s)) {
nodesToVisit.add(nodesToVisitIndex, s);// add the node to the HEAD of the unvisited nodes list.
}
}
System.out.println(nextChild);
}
}
void BFS(int v) {
int nodesToVisitIndex = 0;
List<Integer> nodesToVisit = new ArrayList<>();
nodesToVisit.add(v);
while (nodesToVisitIndex < nodesToVisit.size()) {
Integer nextChild= nodesToVisit.get(nodesToVisitIndex++);// get the node and mark it as visited node by inc the index over the element.
for (Integer s : adj.get(nextChild)) {
if (!nodesToVisit.contains(s)) {
nodesToVisit.add(s);// add the node to the END of the unvisited node list.
}
}
System.out.println(nextChild);
}
}
public static void main(String args[]) {
Graph g = new Graph(5);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
g.addEdge(3, 1);
g.addEdge(3, 4);
System.out.println("Breadth First Traversal- starting from vertex 2:");
g.BFS(2);
System.out.println("Depth First Traversal- starting from vertex 2:");
g.DFS(2);
}}
输出: 宽度优先遍历-从顶点2开始: 2 0 3. 1 4 深度优先遍历-从顶点2开始: 2 3. 4 1 0
使用ES6生成器的非递归DFS
class Node {
constructor(name, childNodes) {
this.name = name;
this.childNodes = childNodes;
this.visited = false;
}
}
function *dfs(s) {
let stack = [];
stack.push(s);
stackLoop: while (stack.length) {
let u = stack[stack.length - 1]; // peek
if (!u.visited) {
u.visited = true; // grey - visited
yield u;
}
for (let v of u.childNodes) {
if (!v.visited) {
stack.push(v);
continue stackLoop;
}
}
stack.pop(); // black - all reachable descendants were processed
}
}
它与典型的非递归DFS不同,可以很容易地检测给定节点的所有可达后代何时被处理,并维护列表/堆栈中的当前路径。
基于biziclops的ES6实现很棒的答案:
root = { text: "root", children: [{ text: "c1", children: [{ text: "c11" }, { text: "c12" }] }, { text: "c2", children: [{ text: "c21" }, { text: "c22" }] }, ] } console.log("DFS:") DFS(root, node => node.children, node => console.log(node.text)); console.log("BFS:") BFS(root, node => node.children, node => console.log(node.text)); function BFS(root, getChildren, visit) { let nodesToVisit = [root]; while (nodesToVisit.length > 0) { const currentNode = nodesToVisit.shift(); nodesToVisit = [ ...nodesToVisit, ...(getChildren(currentNode) || []), ]; visit(currentNode); } } function DFS(root, getChildren, visit) { let nodesToVisit = [root]; while (nodesToVisit.length > 0) { const currentNode = nodesToVisit.shift(); nodesToVisit = [ ...(getChildren(currentNode) || []), ...nodesToVisit, ]; visit(currentNode); } }