我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。
当前回答
http://www.youtube.com/watch?v=zLZhSSXAwxI
刚刚看了这个视频,并提出了实施方案。这对我来说似乎很容易理解。请评论一下。
visited_node={root}
stack.push(root)
while(!stack.empty){
unvisited_node = get_unvisited_adj_nodes(stack.top());
If (unvisited_node!=null){
stack.push(unvisited_node);
visited_node+=unvisited_node;
}
else
stack.pop()
}
其他回答
如果你有指向父节点的指针,你可以在没有额外内存的情况下完成。
def dfs(root):
node = root
while True:
visit(node)
if node.first_child:
node = node.first_child # walk down
else:
while not node.next_sibling:
if node is root:
return
node = node.parent # walk up ...
node = node.next_sibling # ... and right
注意,如果子节点存储为数组而不是通过兄弟指针,那么下一个兄弟节点可以通过以下方式找到:
def next_sibling(node):
try:
i = node.parent.child_nodes.index(node)
return node.parent.child_nodes[i+1]
except (IndexError, AttributeError):
return None
伪代码基于@biziclop的答案:
只使用基本结构:变量、数组、if、while和for 函数getNode(id)和getChildren(id) 假设已知节点数N
注意:我从1开始使用数组索引,而不是0。
广度优先
S = Array(N)
S[1] = 1; // root id
cur = 1;
last = 1
while cur <= last
id = S[cur]
node = getNode(id)
children = getChildren(id)
n = length(children)
for i = 1..n
S[ last+i ] = children[i]
end
last = last+n
cur = cur+1
visit(node)
end
深度优先
S = Array(N)
S[1] = 1; // root id
cur = 1;
while cur > 0
id = S[cur]
node = getNode(id)
children = getChildren(id)
n = length(children)
for i = 1..n
// assuming children are given left-to-right
S[ cur+i-1 ] = children[ n-i+1 ]
// otherwise
// S[ cur+i-1 ] = children[i]
end
cur = cur+n-1
visit(node)
end
你可以使用一个堆栈来保存尚未访问的节点:
stack.push(root)
while !stack.isEmpty() do
node = stack.pop()
for each node.childNodes do
stack.push(stack)
endfor
// …
endwhile
只是想把我的python实现添加到长长的解决方案列表中。这种非递归算法具有发现和完成事件。
worklist = [root_node]
visited = set()
while worklist:
node = worklist[-1]
if node in visited:
# Node is finished
worklist.pop()
else:
# Node is discovered
visited.add(node)
for child in node.children:
worklist.append(child)
使用ES6生成器的非递归DFS
class Node {
constructor(name, childNodes) {
this.name = name;
this.childNodes = childNodes;
this.visited = false;
}
}
function *dfs(s) {
let stack = [];
stack.push(s);
stackLoop: while (stack.length) {
let u = stack[stack.length - 1]; // peek
if (!u.visited) {
u.visited = true; // grey - visited
yield u;
}
for (let v of u.childNodes) {
if (!v.visited) {
stack.push(v);
continue stackLoop;
}
}
stack.pop(); // black - all reachable descendants were processed
}
}
它与典型的非递归DFS不同,可以很容易地检测给定节点的所有可达后代何时被处理,并维护列表/堆栈中的当前路径。