我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。
当前回答
只是想把我的python实现添加到长长的解决方案列表中。这种非递归算法具有发现和完成事件。
worklist = [root_node]
visited = set()
while worklist:
node = worklist[-1]
if node in visited:
# Node is finished
worklist.pop()
else:
# Node is discovered
visited.add(node)
for child in node.children:
worklist.append(child)
其他回答
使用Stack,以下是要遵循的步骤:
如果可能,访问一个相邻的未访问顶点,标记它, 然后把它推到堆栈上。 如果您不能遵循第1步,那么,如果可能的话,弹出一个顶点 堆栈。 如果你不能遵循第1步或第2步,你就完了。
下面是执行上述步骤的Java程序:
public void searchDepthFirst() {
// begin at vertex 0
vertexList[0].wasVisited = true;
displayVertex(0);
stack.push(0);
while (!stack.isEmpty()) {
int adjacentVertex = getAdjacentUnvisitedVertex(stack.peek());
// if no such vertex
if (adjacentVertex == -1) {
stack.pop();
} else {
vertexList[adjacentVertex].wasVisited = true;
// Do something
stack.push(adjacentVertex);
}
}
// stack is empty, so we're done, reset flags
for (int j = 0; j < nVerts; j++)
vertexList[j].wasVisited = false;
}
你可以使用一个堆栈来保存尚未访问的节点:
stack.push(root)
while !stack.isEmpty() do
node = stack.pop()
for each node.childNodes do
stack.push(stack)
endfor
// …
endwhile
你可以使用堆栈。我用邻接矩阵实现了图:
void DFS(int current){
for(int i=1; i<N; i++) visit_table[i]=false;
myStack.push(current);
cout << current << " ";
while(!myStack.empty()){
current = myStack.top();
for(int i=0; i<N; i++){
if(AdjMatrix[current][i] == 1){
if(visit_table[i] == false){
myStack.push(i);
visit_table[i] = true;
cout << i << " ";
}
break;
}
else if(!myStack.empty())
myStack.pop();
}
}
}
DFS:
list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
currentnode = nodes_to_visit.take_first();
nodes_to_visit.prepend( currentnode.children );
//do something
}
BFS:
list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
currentnode = nodes_to_visit.take_first();
nodes_to_visit.append( currentnode.children );
//do something
}
两者的对称相当酷。
更新:如前所述,take_first()删除并返回列表中的第一个元素。
http://www.youtube.com/watch?v=zLZhSSXAwxI
刚刚看了这个视频,并提出了实施方案。这对我来说似乎很容易理解。请评论一下。
visited_node={root}
stack.push(root)
while(!stack.empty){
unvisited_node = get_unvisited_adj_nodes(stack.top());
If (unvisited_node!=null){
stack.push(unvisited_node);
visited_node+=unvisited_node;
}
else
stack.pop()
}