我发现它更方便访问字典键作为obj。foo而不是obj['foo'],所以我写了这个片段:

class AttributeDict(dict):
    def __getattr__(self, attr):
        return self[attr]
    def __setattr__(self, attr, value):
        self[attr] = value

然而,我认为一定有一些原因,Python没有提供开箱即用的功能。以这种方式访问字典键的注意事项和缺陷是什么?


当前回答

你可以用我刚做的这个类来做。对于这个类,您可以像使用另一个字典(包括json序列化)一样使用Map对象,或者使用点表示法。希望对你有所帮助:

class Map(dict):
    """
    Example:
    m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
    """
    def __init__(self, *args, **kwargs):
        super(Map, self).__init__(*args, **kwargs)
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    self[k] = v

        if kwargs:
            for k, v in kwargs.iteritems():
                self[k] = v

    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(Map, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(Map, self).__delitem__(key)
        del self.__dict__[key]

使用例子:

m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
# Add new key
m.new_key = 'Hello world!'
print m.new_key
print m['new_key']
# Update values
m.new_key = 'Yay!'
# Or
m['new_key'] = 'Yay!'
# Delete key
del m.new_key
# Or
del m['new_key']

其他回答

让我发布另一个实现,它基于Kinvais的答案,但集成了http://databio.org/posts/python_AttributeDict.html中提出的AttributeDict的思想。

这个版本的优点是它也适用于嵌套字典:

class AttrDict(dict):
    """
    A class to convert a nested Dictionary into an object with key-values
    that are accessible using attribute notation (AttrDict.attribute) instead of
    key notation (Dict["key"]). This class recursively sets Dicts to objects,
    allowing you to recurse down nested dicts (like: AttrDict.attr.attr)
    """

    # Inspired by:
    # http://stackoverflow.com/a/14620633/1551810
    # http://databio.org/posts/python_AttributeDict.html

    def __init__(self, iterable, **kwargs):
        super(AttrDict, self).__init__(iterable, **kwargs)
        for key, value in iterable.items():
            if isinstance(value, dict):
                self.__dict__[key] = AttrDict(value)
            else:
                self.__dict__[key] = value

解决方案是:

DICT_RESERVED_KEYS = vars(dict).keys()


class SmartDict(dict):
    """
    A Dict which is accessible via attribute dot notation
    """
    def __init__(self, *args, **kwargs):
        """
        :param args: multiple dicts ({}, {}, ..)
        :param kwargs: arbitrary keys='value'

        If ``keyerror=False`` is passed then not found attributes will
        always return None.
        """
        super(SmartDict, self).__init__()
        self['__keyerror'] = kwargs.pop('keyerror', True)
        [self.update(arg) for arg in args if isinstance(arg, dict)]
        self.update(kwargs)

    def __getattr__(self, attr):
        if attr not in DICT_RESERVED_KEYS:
            if self['__keyerror']:
                return self[attr]
            else:
                return self.get(attr)
        return getattr(self, attr)

    def __setattr__(self, key, value):
        if key in DICT_RESERVED_KEYS:
            raise AttributeError("You cannot set a reserved name as attribute")
        self.__setitem__(key, value)

    def __copy__(self):
        return self.__class__(self)

    def copy(self):
        return self.__copy__()

其中我回答了被问到的问题

为什么Python不开箱即用呢?

我怀疑这与Python的禅意有关:“应该有一种——最好只有一种——明显的方法来做到这一点。”这将创建两种明显的方法来访问字典中的值:obj['key']和obj.key。

注意事项和陷阱

这包括代码中可能缺乏清晰性和混乱。也就是说,下面的内容可能会让以后要维护您的代码的人感到困惑,如果您暂时不回去的话,甚至会让您感到困惑。禅宗说:“可读性很重要!”

>>> KEY = 'spam'
>>> d[KEY] = 1
>>> # Several lines of miscellaneous code here...
... assert d.spam == 1

如果d被实例化,或者KEY被定义,或者d[KEY]被赋值的位置远离d.s spam的使用位置,那么很容易导致对正在执行的操作的混淆,因为这不是一个常用的习惯用法。我知道这可能会让我感到困惑。

另外,如果你像下面这样改变KEY的值(但是没有改变d.s rspam),你现在得到:

>>> KEY = 'foo'
>>> d[KEY] = 1
>>> # Several lines of miscellaneous code here...
... assert d.spam == 1
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
AttributeError: 'C' object has no attribute 'spam'

在我看来,不值得这么努力。

其他物品

正如其他人所注意到的,您可以使用任何可哈希对象(不仅仅是字符串)作为dict键。例如,

>>> d = {(2, 3): True,}
>>> assert d[(2, 3)] is True
>>> 

是合法的,但是

>>> C = type('C', (object,), {(2, 3): True})
>>> d = C()
>>> assert d.(2, 3) is True
  File "<stdin>", line 1
  d.(2, 3)
    ^
SyntaxError: invalid syntax
>>> getattr(d, (2, 3))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: getattr(): attribute name must be string
>>> 

不是。这使您可以访问字典键的整个范围的可打印字符或其他可哈希对象,而在访问对象属性时则没有这些权限。这使得缓存对象元类这样的魔法成为可能,就像Python Cookbook(第9章)中的食谱一样。

其中我发表评论

我更喜欢垃圾邮件的美感。eggs over spam['eggs'](我认为它看起来更干净),当我遇到namedtuple时,我真的开始渴望这个功能。但是能够做以下事情的便利性胜过它。

>>> KEYS = 'spam eggs ham'
>>> VALS = [1, 2, 3]
>>> d = {k: v for k, v in zip(KEYS.split(' '), VALS)}
>>> assert d == {'spam': 1, 'eggs': 2, 'ham': 3}
>>>

这是一个简单的例子,但我经常发现自己在不同的情况下使用字典,而不是使用obj。键符号(即,当我需要从XML文件中读取prefs时)。在其他情况下,当我想实例化一个动态类并为其添加一些属性时,我继续使用字典来保持一致性,以增强可读性。

我相信OP早就解决了这个问题,让他满意了,但如果他仍然想要这个功能,那么我建议他从pypi下载一个提供该功能的包:

邦奇是我更熟悉的人。dict的子类,所以你有所有的功能。 AttrDict看起来也很不错,但我对它不熟悉,也没有像我对Bunch那样详细地查看源代码。 上瘾是积极维护,并提供attrlike访问和更多。 正如Rotareti在评论中提到的,Bunch已经被弃用了,但是有一个活跃的分支叫做Munch。

但是,为了提高代码的可读性,我强烈建议他不要混合使用他的符号风格。如果他喜欢这种表示法,那么他应该简单地实例化一个动态对象,添加他想要的属性,然后收工:

>>> C = type('C', (object,), {})
>>> d = C()
>>> d.spam = 1
>>> d.eggs = 2
>>> d.ham = 3
>>> assert d.__dict__ == {'spam': 1, 'eggs': 2, 'ham': 3}

其中我更新,在评论中回答一个后续问题

在下面的评论中,Elmo问道:

如果你想再深入一点呢?(指类型(…))

虽然我从未使用过这个用例(同样,我倾向于使用嵌套的dict,对于 一致性),下面的代码工作:

>>> C = type('C', (object,), {})
>>> d = C()
>>> for x in 'spam eggs ham'.split():
...     setattr(d, x, C())
...     i = 1
...     for y in 'one two three'.split():
...         setattr(getattr(d, x), y, i)
...         i += 1
...
>>> assert d.spam.__dict__ == {'one': 1, 'two': 2, 'three': 3}

显然,现在有一个库- https://pypi.python.org/pypi/attrdict -实现了这个确切的功能,加上递归合并和json加载。也许值得一看。

这不是一个“好”的答案,但我认为这是俏皮的(它不处理嵌套字典在当前形式)。简单地将dict包装在函数中:

def make_funcdict(d=None, **kwargs)
    def funcdict(d=None, **kwargs):
        if d is not None:
            funcdict.__dict__.update(d)
        funcdict.__dict__.update(kwargs)
        return funcdict.__dict__
    funcdict(d, **kwargs)
    return funcdict

现在你的语法略有不同。访问dict项就像访问属性f.key一样。要以通常的方式访问dict项(和其他dict方法),请执行f()['key'],我们可以通过使用关键字参数和/或字典调用f来方便地更新dict

例子

d = {'name':'Henry', 'age':31}
d = make_funcdict(d)
>>> for key in d():
...     print key
... 
age
name
>>> print d.name
... Henry
>>> print d.age
... 31
>>> d({'Height':'5-11'}, Job='Carpenter')
... {'age': 31, 'name': 'Henry', 'Job': 'Carpenter', 'Height': '5-11'}

就是这样。如果有人提出这种方法的优点和缺点,我会很高兴。