我发现它更方便访问字典键作为obj。foo而不是obj['foo'],所以我写了这个片段:

class AttributeDict(dict):
    def __getattr__(self, attr):
        return self[attr]
    def __setattr__(self, attr, value):
        self[attr] = value

然而,我认为一定有一些原因,Python没有提供开箱即用的功能。以这种方式访问字典键的注意事项和缺陷是什么?


当前回答

编辑:NeoBunch是废弃的,Munch(上面提到过)可以作为一个替代品。不过,我把这个解决方案留在这里,它可能对某些人有用。

正如Doug所指出的,有一个Bunch包,你可以使用它来实现obj。关键功能。实际上有一个更新的版本叫做

尼奥邦克·蒙克

它有一个伟大的功能,通过neobunchify函数将你的字典转换为NeoBunch对象。我经常使用Mako模板,将数据作为NeoBunch对象传递使它们更具可读性,所以如果你碰巧在你的Python程序中使用了一个普通的字典,但想要在Mako模板中使用点符号,你可以这样使用:

from mako.template import Template
from neobunch import neobunchify

mako_template = Template(filename='mako.tmpl', strict_undefined=True)
data = {'tmpl_data': [{'key1': 'value1', 'key2': 'value2'}]}
with open('out.txt', 'w') as out_file:
    out_file.write(mako_template.render(**neobunchify(data)))

Mako模板看起来像这样:

% for d in tmpl_data:
Column1     Column2
${d.key1}   ${d.key2}
% endfor

其他回答

这并没有解决最初的问题,但是对于像我这样在这里寻找提供此功能的库的人来说应该是有用的。

Addict是一个很棒的库:https://github.com/mewwts/addict它照顾了前面的答案中提到的许多问题。

文档中的一个例子:

body = {
    'query': {
        'filtered': {
            'query': {
                'match': {'description': 'addictive'}
            },
            'filter': {
                'term': {'created_by': 'Mats'}
            }
        }
    }
}

成瘾者:

from addict import Dict
body = Dict()
body.query.filtered.query.match.description = 'addictive'
body.query.filtered.filter.term.created_by = 'Mats'

没有必要自己写 Setattr()和getattr()已经存在。

类对象的优势可能在类定义和继承中发挥作用。

买者自负:出于某些原因,这样的类似乎会破坏多处理包。我只是在发现这个bug之前挣扎了一段时间,所以: 在python multiprocessing中查找异常

很抱歉再添加一个,但这一个解决了subdicts和纠正AttributeError,尽管非常简单:

class DotDict(dict):
    def __init__(self, d: dict = {}):
        super().__init__()
        for key, value in d.items():
            self[key] = DotDict(value) if type(value) is dict else value
    
    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError(key) #Set proper exception, not KeyError

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

编辑:NeoBunch是废弃的,Munch(上面提到过)可以作为一个替代品。不过,我把这个解决方案留在这里,它可能对某些人有用。

正如Doug所指出的,有一个Bunch包,你可以使用它来实现obj。关键功能。实际上有一个更新的版本叫做

尼奥邦克·蒙克

它有一个伟大的功能,通过neobunchify函数将你的字典转换为NeoBunch对象。我经常使用Mako模板,将数据作为NeoBunch对象传递使它们更具可读性,所以如果你碰巧在你的Python程序中使用了一个普通的字典,但想要在Mako模板中使用点符号,你可以这样使用:

from mako.template import Template
from neobunch import neobunchify

mako_template = Template(filename='mako.tmpl', strict_undefined=True)
data = {'tmpl_data': [{'key1': 'value1', 'key2': 'value2'}]}
with open('out.txt', 'w') as out_file:
    out_file.write(mako_template.render(**neobunchify(data)))

Mako模板看起来像这样:

% for d in tmpl_data:
Column1     Column2
${d.key1}   ${d.key2}
% endfor