我发现它更方便访问字典键作为obj。foo而不是obj['foo'],所以我写了这个片段:
class AttributeDict(dict):
def __getattr__(self, attr):
return self[attr]
def __setattr__(self, attr, value):
self[attr] = value
然而,我认为一定有一些原因,Python没有提供开箱即用的功能。以这种方式访问字典键的注意事项和缺陷是什么?
很抱歉再添加一个,但这一个解决了subdicts和纠正AttributeError,尽管非常简单:
class DotDict(dict):
def __init__(self, d: dict = {}):
super().__init__()
for key, value in d.items():
self[key] = DotDict(value) if type(value) is dict else value
def __getattr__(self, key):
if key in self:
return self[key]
raise AttributeError(key) #Set proper exception, not KeyError
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
更新- 2020年
自从这个问题在大约十年前被提出以来,Python本身已经发生了相当大的变化。
虽然我最初回答中的方法在某些情况下仍然有效,(例如,遗留项目坚持使用旧版本的Python,以及在某些情况下,您确实需要处理具有非常动态字符串键的字典),但我认为一般来说,Python 3.7中引入的数据类是AttrDict绝大多数用例的明显/正确的解决方案。
原来的答案
最好的方法是:
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
一些优点:
它真的有用!
没有字典类方法被遮蔽(例如.keys()工作得很好。除非-当然-你给它们赋值,见下文)
属性和项总是同步的
试图将不存在的key作为属性访问会正确地引发AttributeError而不是KeyError
支持[Tab]自动补全(例如在jupyter和ipython中)
缺点:
如果.keys()等方法被传入的数据覆盖,它们就不能正常工作
在Python < 2.7.4 / Python3 < 3.2.3中导致内存泄漏
Pylint因为E1123(意外关键字参数)和E1103(可能没有成员)而抓狂
对于外行来说,这似乎是纯粹的魔法。
简要解释一下它是如何工作的
All python objects internally store their attributes in a dictionary that is named __dict__.
There is no requirement that the internal dictionary __dict__ would need to be "just a plain dict", so we can assign any subclass of dict() to the internal dictionary.
In our case we simply assign the AttrDict() instance we are instantiating (as we are in __init__).
By calling super()'s __init__() method we made sure that it (already) behaves exactly like a dictionary, since that function calls all the dictionary instantiation code.
Python没有开箱即用提供此功能的原因之一
正如“cons”列表中所指出的,这将存储键的名称空间(可能来自任意和/或不受信任的数据!)与内置dict方法属性的名称空间结合在一起。例如:
d = AttrDict()
d.update({'items':["jacket", "necktie", "trousers"]})
for k, v in d.items(): # TypeError: 'list' object is not callable
print "Never reached!"
这不是一个“好”的答案,但我认为这是俏皮的(它不处理嵌套字典在当前形式)。简单地将dict包装在函数中:
def make_funcdict(d=None, **kwargs)
def funcdict(d=None, **kwargs):
if d is not None:
funcdict.__dict__.update(d)
funcdict.__dict__.update(kwargs)
return funcdict.__dict__
funcdict(d, **kwargs)
return funcdict
现在你的语法略有不同。访问dict项就像访问属性f.key一样。要以通常的方式访问dict项(和其他dict方法),请执行f()['key'],我们可以通过使用关键字参数和/或字典调用f来方便地更新dict
例子
d = {'name':'Henry', 'age':31}
d = make_funcdict(d)
>>> for key in d():
... print key
...
age
name
>>> print d.name
... Henry
>>> print d.age
... 31
>>> d({'Height':'5-11'}, Job='Carpenter')
... {'age': 31, 'name': 'Henry', 'Job': 'Carpenter', 'Height': '5-11'}
就是这样。如果有人提出这种方法的优点和缺点,我会很高兴。
下面是一个使用内置collection .namedtuple的不可变记录的简短示例:
def record(name, d):
return namedtuple(name, d.keys())(**d)
还有一个用法示例:
rec = record('Model', {
'train_op': train_op,
'loss': loss,
})
print rec.loss(..)