我发现它更方便访问字典键作为obj。foo而不是obj['foo'],所以我写了这个片段:

class AttributeDict(dict):
    def __getattr__(self, attr):
        return self[attr]
    def __setattr__(self, attr, value):
        self[attr] = value

然而,我认为一定有一些原因,Python没有提供开箱即用的功能。以这种方式访问字典键的注意事项和缺陷是什么?


当前回答

显然,现在有一个库- https://pypi.python.org/pypi/attrdict -实现了这个确切的功能,加上递归合并和json加载。也许值得一看。

其他回答

这个答案摘自Luciano Ramalho的《流利的Python》一书。这要归功于那个家伙。

class AttrDict:
    """A read-only façade for navigating a JSON-like object
    using attribute notation
    """

    def __init__(self, mapping):
        self._data = dict(mapping)

    def __getattr__(self, name):
        if hasattr(self._data, name):
            return getattr(self._data, name)
        else:
            return AttrDict.build(self._data[name])

    @classmethod
    def build(cls, obj):
        if isinstance(obj, Mapping):
            return cls(obj)
        elif isinstance(obj, MutableSequence):
            return [cls.build(item) for item in obj]
        else:
            return obj

in the init we are taking the dict and making it a dictionary. when getattr is used we try to get the attribute from the dict if the dict already has that attribute. or else we are passing the argument to a class method called build. now build does the intresting thing. if the object is dict or a mapping like that, the that object is made an attr dict itself. if it's a sequence like list, it's passed to the build function we r on right now. if it's anythin else, like str or int. return the object itself.

这不是一个“好”的答案,但我认为这是俏皮的(它不处理嵌套字典在当前形式)。简单地将dict包装在函数中:

def make_funcdict(d=None, **kwargs)
    def funcdict(d=None, **kwargs):
        if d is not None:
            funcdict.__dict__.update(d)
        funcdict.__dict__.update(kwargs)
        return funcdict.__dict__
    funcdict(d, **kwargs)
    return funcdict

现在你的语法略有不同。访问dict项就像访问属性f.key一样。要以通常的方式访问dict项(和其他dict方法),请执行f()['key'],我们可以通过使用关键字参数和/或字典调用f来方便地更新dict

例子

d = {'name':'Henry', 'age':31}
d = make_funcdict(d)
>>> for key in d():
...     print key
... 
age
name
>>> print d.name
... Henry
>>> print d.age
... 31
>>> d({'Height':'5-11'}, Job='Carpenter')
... {'age': 31, 'name': 'Henry', 'Job': 'Carpenter', 'Height': '5-11'}

就是这样。如果有人提出这种方法的优点和缺点,我会很高兴。

买者自负:出于某些原因,这样的类似乎会破坏多处理包。我只是在发现这个bug之前挣扎了一段时间,所以: 在python multiprocessing中查找异常

你可以从标准库中获取一个方便的容器类:

from argparse import Namespace

避免复制代码位。没有标准的字典访问,但如果你真的想要的话,很容易得到一个。argparse中的代码很简单,

class Namespace(_AttributeHolder):
    """Simple object for storing attributes.

    Implements equality by attribute names and values, and provides a simple
    string representation.
    """

    def __init__(self, **kwargs):
        for name in kwargs:
            setattr(self, name, kwargs[name])

    __hash__ = None

    def __eq__(self, other):
        return vars(self) == vars(other)

    def __ne__(self, other):
        return not (self == other)

    def __contains__(self, key):
        return key in self.__dict__

最简单的方法是定义一个类,我们称之为Namespace。在字典上使用对象dict.update()。然后,字典将被视为一个对象。

class Namespace(object):
    '''
    helps referencing object in a dictionary as dict.key instead of dict['key']
    '''
    def __init__(self, adict):
        self.__dict__.update(adict)



Person = Namespace({'name': 'ahmed',
                     'age': 30}) #--> added for edge_cls


print(Person.name)