我发现它更方便访问字典键作为obj。foo而不是obj['foo'],所以我写了这个片段:

class AttributeDict(dict):
    def __getattr__(self, attr):
        return self[attr]
    def __setattr__(self, attr, value):
        self[attr] = value

然而,我认为一定有一些原因,Python没有提供开箱即用的功能。以这种方式访问字典键的注意事项和缺陷是什么?


当前回答

显然,现在有一个库- https://pypi.python.org/pypi/attrdict -实现了这个确切的功能,加上递归合并和json加载。也许值得一看。

其他回答

以这种方式访问字典键的注意事项和缺陷是什么?

正如@Henry所指出的,在dict中不能使用点访问的一个原因是,它将dict键名限制为python有效变量,从而限制了所有可能的名称。

下面是一些例子,说明为什么在给定字典d的情况下,点点访问通常没有帮助:

有效性

以下属性在Python中是无效的:

d.1_foo                           # enumerated names
d./bar                            # path names
d.21.7, d.12:30                   # decimals, time
d.""                              # empty strings
d.john doe, d.denny's             # spaces, misc punctuation 
d.3 * x                           # expressions  

风格

PEP8约定将对属性命名施加软约束:

A.保留关键字(或内置函数)名称:

d.in
d.False, d.True
d.max, d.min
d.sum
d.id

如果函数参数的名称与保留关键字冲突,通常最好在后面添加一个下划线…

B.方法和变量名的大小写规则:

变量名遵循与函数名相同的约定。

d.Firstname
d.Country

使用函数命名规则:小写字母,单词之间用下划线分隔,以提高可读性。


有时,在pandas这样的库中会出现这些问题,这些库允许按名称点访问DataFrame列。解决命名限制的默认机制也是数组表示法——括号中的字符串。

如果这些约束不适用于您的用例,那么在点访问数据结构上有几个选项。

一般情况下它不成立。不是所有有效的dict键都有可寻址的属性(“键”)。所以,你要小心。

Python对象基本上都是字典。所以我怀疑会有什么表现或其他惩罚。

买者自负:出于某些原因,这样的类似乎会破坏多处理包。我只是在发现这个bug之前挣扎了一段时间,所以: 在python multiprocessing中查找异常

这不是一个“好”的答案,但我认为这是俏皮的(它不处理嵌套字典在当前形式)。简单地将dict包装在函数中:

def make_funcdict(d=None, **kwargs)
    def funcdict(d=None, **kwargs):
        if d is not None:
            funcdict.__dict__.update(d)
        funcdict.__dict__.update(kwargs)
        return funcdict.__dict__
    funcdict(d, **kwargs)
    return funcdict

现在你的语法略有不同。访问dict项就像访问属性f.key一样。要以通常的方式访问dict项(和其他dict方法),请执行f()['key'],我们可以通过使用关键字参数和/或字典调用f来方便地更新dict

例子

d = {'name':'Henry', 'age':31}
d = make_funcdict(d)
>>> for key in d():
...     print key
... 
age
name
>>> print d.name
... Henry
>>> print d.age
... 31
>>> d({'Height':'5-11'}, Job='Carpenter')
... {'age': 31, 'name': 'Henry', 'Job': 'Carpenter', 'Height': '5-11'}

就是这样。如果有人提出这种方法的优点和缺点,我会很高兴。

下面是一个使用内置collection .namedtuple的不可变记录的简短示例:

def record(name, d):
    return namedtuple(name, d.keys())(**d)

还有一个用法示例:

rec = record('Model', {
    'train_op': train_op,
    'loss': loss,
})

print rec.loss(..)