I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.
当前回答
pip install requests-threads
使用实例使用async/await - send 100个并发请求
from requests_threads import AsyncSession
session = AsyncSession(n=100)
async def _main():
rs = []
for _ in range(100):
rs.append(await session.get('http://httpbin.org/get'))
print(rs)
if __name__ == '__main__':
session.run(_main)
此示例仅适用于Python 3。您还可以提供自己的asyncio事件循环!
使用实例Twisted
from twisted.internet.defer import inlineCallbacks
from twisted.internet.task import react
from requests_threads import AsyncSession
session = AsyncSession(n=100)
@inlineCallbacks
def main(reactor):
responses = []
for i in range(100):
responses.append(session.get('http://httpbin.org/get'))
for response in responses:
r = yield response
print(r)
if __name__ == '__main__':
react(main)
这个例子在Python 2和Python 3上都可以运行。
也许这对我的回购有帮助,一个基本的例子, 用python编写快速异步HTTP请求
其他回答
我发现使用tornado包是最快和最简单的方法来实现这一点:
from tornado import ioloop, httpclient, gen
def main(urls):
"""
Asynchronously download the HTML contents of a list of URLs.
:param urls: A list of URLs to download.
:return: List of response objects, one for each URL.
"""
@gen.coroutine
def fetch_and_handle():
httpclient.AsyncHTTPClient.configure(None, defaults=dict(user_agent='MyUserAgent'))
http_client = httpclient.AsyncHTTPClient()
waiter = gen.WaitIterator(*[http_client.fetch(url, raise_error=False, method='HEAD')
for url in urls])
results = []
# Wait for the jobs to complete
while not waiter.done():
try:
response = yield waiter.next()
except httpclient.HTTPError as e:
print(f'Non-200 HTTP response returned: {e}')
continue
except Exception as e:
print(f'An unexpected error occurred querying: {e}')
continue
else:
print(f'URL \'{response.request.url}\' has status code <{response.code}>')
results.append(response)
return results
loop = ioloop.IOLoop.current()
web_pages = loop.run_sync(fetch_and_handle)
return web_pages
my_urls = ['url1.com', 'url2.com', 'url100000.com']
responses = main(my_urls)
print(responses[0])
线程绝对不是这里的答案。它们将提供进程和内核瓶颈,以及吞吐量限制,如果总体目标是“最快的方式”,这些限制是不可接受的。
稍微扭曲一点,它的异步HTTP客户端会给你更好的结果。
我知道这是一个老问题,但在Python 3.7中,您可以使用asyncio和aiohttp来做到这一点。
import asyncio
import aiohttp
from aiohttp import ClientSession, ClientConnectorError
async def fetch_html(url: str, session: ClientSession, **kwargs) -> tuple:
try:
resp = await session.request(method="GET", url=url, **kwargs)
except ClientConnectorError:
return (url, 404)
return (url, resp.status)
async def make_requests(urls: set, **kwargs) -> None:
async with ClientSession() as session:
tasks = []
for url in urls:
tasks.append(
fetch_html(url=url, session=session, **kwargs)
)
results = await asyncio.gather(*tasks)
for result in results:
print(f'{result[1]} - {str(result[0])}')
if __name__ == "__main__":
import pathlib
import sys
assert sys.version_info >= (3, 7), "Script requires Python 3.7+."
here = pathlib.Path(__file__).parent
with open(here.joinpath("urls.txt")) as infile:
urls = set(map(str.strip, infile))
asyncio.run(make_requests(urls=urls))
你可以阅读更多关于它的内容,并在这里看到一个例子。
一个解决方案:
from twisted.internet import reactor, threads
from urlparse import urlparse
import httplib
import itertools
concurrent = 200
finished=itertools.count(1)
reactor.suggestThreadPoolSize(concurrent)
def getStatus(ourl):
url = urlparse(ourl)
conn = httplib.HTTPConnection(url.netloc)
conn.request("HEAD", url.path)
res = conn.getresponse()
return res.status
def processResponse(response,url):
print response, url
processedOne()
def processError(error,url):
print "error", url#, error
processedOne()
def processedOne():
if finished.next()==added:
reactor.stop()
def addTask(url):
req = threads.deferToThread(getStatus, url)
req.addCallback(processResponse, url)
req.addErrback(processError, url)
added=0
for url in open('urllist.txt'):
added+=1
addTask(url.strip())
try:
reactor.run()
except KeyboardInterrupt:
reactor.stop()
Testtime:
[kalmi@ubi1:~] wc -l urllist.txt
10000 urllist.txt
[kalmi@ubi1:~] time python f.py > /dev/null
real 1m10.682s
user 0m16.020s
sys 0m10.330s
[kalmi@ubi1:~] head -n 6 urllist.txt
http://www.google.com
http://www.bix.hu
http://www.godaddy.com
http://www.google.com
http://www.bix.hu
http://www.godaddy.com
[kalmi@ubi1:~] python f.py | head -n 6
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
Pingtime:
bix.hu is ~10 ms away from me
godaddy.com: ~170 ms
google.com: ~30 ms
考虑使用风车,虽然风车可能不能做那么多线程。
您可以在5台机器上使用手卷Python脚本,每台机器使用端口40000-60000连接出站,打开100,000个端口连接。
另外,使用一个线程良好的QA应用程序(如OpenSTA)做一个示例测试可能会有所帮助,以了解每个服务器可以处理多少。
另外,试着在LWP::ConnCache类中使用简单的Perl。这样您可能会获得更好的性能(更多的连接)。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录