I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.
当前回答
使用grequests,它是requests + Gevent模块的组合。
GRequests允许您使用带有Gevent的Requests来轻松地生成异步HTTP请求。
用法很简单:
import grequests
urls = [
'http://www.heroku.com',
'http://tablib.org',
'http://httpbin.org',
'http://python-requests.org',
'http://kennethreitz.com'
]
创建一组未发送的请求:
>>> rs = (grequests.get(u) for u in urls)
同时发送:
>>> grequests.map(rs)
[<Response [200]>, <Response [200]>, <Response [200]>, <Response [200]>, <Response [200]>]
其他回答
解决这个问题的一个好方法是首先编写获得一个结果所需的代码,然后合并线程代码来并行化应用程序。
In a perfect world this would simply mean simultaneously starting 100,000 threads which output their results into a dictionary or list for later processing, but in practice you are limited in how many parallel HTTP requests you can issue in this fashion. Locally, you have limits in how many sockets you can open concurrently, how many threads of execution your Python interpreter will allow. Remotely, you may be limited in the number of simultaneous connections if all the requests are against one server, or many. These limitations will probably necessitate that you write the script in such a way as to only poll a small fraction of the URLs at any one time (100, as another poster mentioned, is probably a decent thread pool size, although you may find that you can successfully deploy many more).
您可以遵循以下设计模式来解决上述问题:
Start a thread which launches new request threads until the number of currently running threads (you can track them via threading.active_count() or by pushing the thread objects into a data structure) is >= your maximum number of simultaneous requests (say 100), then sleeps for a short timeout. This thread should terminate when there is are no more URLs to process. Thus, the thread will keep waking up, launching new threads, and sleeping until your are finished. Have the request threads store their results in some data structure for later retrieval and output. If the structure you are storing the results in is a list or dict in CPython, you can safely append or insert unique items from your threads without locks, but if you write to a file or require in more complex cross-thread data interaction you should use a mutual exclusion lock to protect this state from corruption.
我建议您使用threading模块。您可以使用它来启动和跟踪正在运行的线程。Python的线程支持是完全的,但是对问题的描述表明它完全满足了您的需求。
最后,如果您希望看到用Python编写的并行网络应用程序的相当简单的应用程序,请查看ssh.py。它是一个小型库,使用Python线程并行处理许多SSH连接。该设计非常接近您的需求,您可能会发现它是一个很好的资源。
对于您的情况,线程可能会做的技巧,因为您可能会花费大部分时间等待响应。标准库中有一些有用的模块,如Queue,可能会有所帮助。
我以前做过类似的并行下载文件的事情,对我来说已经足够好了,但它不是你所说的那种规模。
如果您的任务对cpu的限制更大,您可能需要考虑multiprocessing模块,它将允许您利用更多的cpu /内核/线程(更多的进程不会相互阻塞,因为锁定是每个进程)
考虑使用风车,虽然风车可能不能做那么多线程。
您可以在5台机器上使用手卷Python脚本,每台机器使用端口40000-60000连接出站,打开100,000个端口连接。
另外,使用一个线程良好的QA应用程序(如OpenSTA)做一个示例测试可能会有所帮助,以了解每个服务器可以处理多少。
另外,试着在LWP::ConnCache类中使用简单的Perl。这样您可能会获得更好的性能(更多的连接)。
如果您希望获得尽可能好的性能,您可能会考虑使用异步I/O而不是线程。与成千上万个操作系统线程相关的开销是不小的,Python解释器内的上下文切换甚至增加了更多的开销。线程当然可以完成工作,但我怀疑异步路由将提供更好的整体性能。
具体来说,我建议使用Twisted库中的异步web客户端(http://www.twistedmatrix.com)。它有一个公认的陡峭的学习曲线,但一旦你很好地掌握了Twisted的异步编程风格,它就很容易使用。
Twisted的异步web客户端API的HowTo可以在以下地址找到:
http://twistedmatrix.com/documents/current/web/howto/client.html
我知道这是一个老问题,但在Python 3.7中,您可以使用asyncio和aiohttp来做到这一点。
import asyncio
import aiohttp
from aiohttp import ClientSession, ClientConnectorError
async def fetch_html(url: str, session: ClientSession, **kwargs) -> tuple:
try:
resp = await session.request(method="GET", url=url, **kwargs)
except ClientConnectorError:
return (url, 404)
return (url, resp.status)
async def make_requests(urls: set, **kwargs) -> None:
async with ClientSession() as session:
tasks = []
for url in urls:
tasks.append(
fetch_html(url=url, session=session, **kwargs)
)
results = await asyncio.gather(*tasks)
for result in results:
print(f'{result[1]} - {str(result[0])}')
if __name__ == "__main__":
import pathlib
import sys
assert sys.version_info >= (3, 7), "Script requires Python 3.7+."
here = pathlib.Path(__file__).parent
with open(here.joinpath("urls.txt")) as infile:
urls = set(map(str.strip, infile))
asyncio.run(make_requests(urls=urls))
你可以阅读更多关于它的内容,并在这里看到一个例子。
推荐文章
- 如何用OpenCV2.0和Python2.6调整图像大小
- 在每个列表元素上调用int()函数?
- 当使用代码存储库时,如何引用资源的相对路径
- 如何在Flask-SQLAlchemy中按id删除记录
- 在Python中插入列表的第一个位置
- Python Pandas只合并某些列
- 如何在一行中连接两个集而不使用“|”
- 从字符串中移除前缀
- 代码结束时发出警报
- 如何在Python中按字母顺序排序字符串中的字母
- 在matplotlib中将y轴标签添加到次要y轴
- 为什么说“HTTP是无状态协议”?
- 如何消除数独方块的凹凸缺陷?
- 为什么出现这个UnboundLocalError(闭包)?
- 使用Python请求的异步请求