I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.
当前回答
解决这个问题的一个好方法是首先编写获得一个结果所需的代码,然后合并线程代码来并行化应用程序。
In a perfect world this would simply mean simultaneously starting 100,000 threads which output their results into a dictionary or list for later processing, but in practice you are limited in how many parallel HTTP requests you can issue in this fashion. Locally, you have limits in how many sockets you can open concurrently, how many threads of execution your Python interpreter will allow. Remotely, you may be limited in the number of simultaneous connections if all the requests are against one server, or many. These limitations will probably necessitate that you write the script in such a way as to only poll a small fraction of the URLs at any one time (100, as another poster mentioned, is probably a decent thread pool size, although you may find that you can successfully deploy many more).
您可以遵循以下设计模式来解决上述问题:
Start a thread which launches new request threads until the number of currently running threads (you can track them via threading.active_count() or by pushing the thread objects into a data structure) is >= your maximum number of simultaneous requests (say 100), then sleeps for a short timeout. This thread should terminate when there is are no more URLs to process. Thus, the thread will keep waking up, launching new threads, and sleeping until your are finished. Have the request threads store their results in some data structure for later retrieval and output. If the structure you are storing the results in is a list or dict in CPython, you can safely append or insert unique items from your threads without locks, but if you write to a file or require in more complex cross-thread data interaction you should use a mutual exclusion lock to protect this state from corruption.
我建议您使用threading模块。您可以使用它来启动和跟踪正在运行的线程。Python的线程支持是完全的,但是对问题的描述表明它完全满足了您的需求。
最后,如果您希望看到用Python编写的并行网络应用程序的相当简单的应用程序,请查看ssh.py。它是一个小型库,使用Python线程并行处理许多SSH连接。该设计非常接近您的需求,您可能会发现它是一个很好的资源。
其他回答
下面是一个“异步”解决方案,它不使用asyncio,而是使用asyncio使用的低级机制(在Linux上):select()。(或者asyncio可能使用poll或epoll,但这是类似的原理。)
它是对PyCurl示例的稍微修改版本。
(为了简单起见,它多次请求相同的URL,但您可以轻松地修改它以检索一系列不同的URL。)
(另一个轻微的修改可以使这个检索相同的URL作为一个无限循环。提示:将while url和句柄更改为while句柄,将while nprocessed<nurls更改为while 1。)
import pycurl,io,gzip,signal, time, random
signal.signal(signal.SIGPIPE, signal.SIG_IGN) # NOTE! We should ignore SIGPIPE when using pycurl.NOSIGNAL - see the libcurl tutorial for more info
NCONNS = 2 # Number of concurrent GET requests
url = 'example.com'
urls = [url for i in range(0x7*NCONNS)] # Copy the same URL over and over
# Check args
nurls = len(urls)
NCONNS = min(NCONNS, nurls)
print("\x1b[32m%s \x1b[0m(compiled against 0x%x)" % (pycurl.version, pycurl.COMPILE_LIBCURL_VERSION_NUM))
print(f'\x1b[37m{nurls} \x1b[91m@ \x1b[92m{NCONNS}\x1b[0m')
# Pre-allocate a list of curl objects
m = pycurl.CurlMulti()
m.handles = []
for i in range(NCONNS):
c = pycurl.Curl()
c.setopt(pycurl.FOLLOWLOCATION, 1)
c.setopt(pycurl.MAXREDIRS, 5)
c.setopt(pycurl.CONNECTTIMEOUT, 30)
c.setopt(pycurl.TIMEOUT, 300)
c.setopt(pycurl.NOSIGNAL, 1)
m.handles.append(c)
handles = m.handles # MUST make a copy?!
nprocessed = 0
while nprocessed<nurls:
while urls and handles: # If there is an url to process and a free curl object, add to multi stack
url = urls.pop(0)
c = handles.pop()
c.buf = io.BytesIO()
c.url = url # store some info
c.t0 = time.perf_counter()
c.setopt(pycurl.URL, c.url)
c.setopt(pycurl.WRITEDATA, c.buf)
c.setopt(pycurl.HTTPHEADER, [f'user-agent: {random.randint(0,(1<<256)-1):x}', 'accept-encoding: gzip, deflate', 'connection: keep-alive', 'keep-alive: timeout=10, max=1000'])
m.add_handle(c)
while 1: # Run the internal curl state machine for the multi stack
ret, num_handles = m.perform()
if ret!=pycurl.E_CALL_MULTI_PERFORM: break
while 1: # Check for curl objects which have terminated, and add them to the handles
nq, ok_list, ko_list = m.info_read()
for c in ok_list:
m.remove_handle(c)
t1 = time.perf_counter()
reply = gzip.decompress(c.buf.getvalue())
print(f'\x1b[33mGET \x1b[32m{t1-c.t0:.3f} \x1b[37m{len(reply):9,} \x1b[0m{reply[:32]}...') # \x1b[35m{psutil.Process(os.getpid()).memory_info().rss:,} \x1b[0mbytes')
handles.append(c)
for c, errno, errmsg in ko_list:
m.remove_handle(c)
print('\x1b[31mFAIL {c.url} {errno} {errmsg}')
handles.append(c)
nprocessed = nprocessed + len(ok_list) + len(ko_list)
if nq==0: break
m.select(1.0) # Currently no more I/O is pending, could do something in the meantime (display a progress bar, etc.). We just call select() to sleep until some more data is available.
for c in m.handles:
c.close()
m.close()
一个使用tornado的异步网络库解决方案
from tornado import ioloop, httpclient
i = 0
def handle_request(response):
print(response.code)
global i
i -= 1
if i == 0:
ioloop.IOLoop.instance().stop()
http_client = httpclient.AsyncHTTPClient()
for url in open('urls.txt'):
i += 1
http_client.fetch(url.strip(), handle_request, method='HEAD')
ioloop.IOLoop.instance().start()
这段代码使用非阻塞网络I/O,没有任何限制。它可以扩展到数万个打开的连接。它将在单个线程中运行,但比任何线程解决方案都要快。签出非阻塞I/O
使用grequests,它是requests + Gevent模块的组合。
GRequests允许您使用带有Gevent的Requests来轻松地生成异步HTTP请求。
用法很简单:
import grequests
urls = [
'http://www.heroku.com',
'http://tablib.org',
'http://httpbin.org',
'http://python-requests.org',
'http://kennethreitz.com'
]
创建一组未发送的请求:
>>> rs = (grequests.get(u) for u in urls)
同时发送:
>>> grequests.map(rs)
[<Response [200]>, <Response [200]>, <Response [200]>, <Response [200]>, <Response [200]>]
我发现使用tornado包是最快和最简单的方法来实现这一点:
from tornado import ioloop, httpclient, gen
def main(urls):
"""
Asynchronously download the HTML contents of a list of URLs.
:param urls: A list of URLs to download.
:return: List of response objects, one for each URL.
"""
@gen.coroutine
def fetch_and_handle():
httpclient.AsyncHTTPClient.configure(None, defaults=dict(user_agent='MyUserAgent'))
http_client = httpclient.AsyncHTTPClient()
waiter = gen.WaitIterator(*[http_client.fetch(url, raise_error=False, method='HEAD')
for url in urls])
results = []
# Wait for the jobs to complete
while not waiter.done():
try:
response = yield waiter.next()
except httpclient.HTTPError as e:
print(f'Non-200 HTTP response returned: {e}')
continue
except Exception as e:
print(f'An unexpected error occurred querying: {e}')
continue
else:
print(f'URL \'{response.request.url}\' has status code <{response.code}>')
results.append(response)
return results
loop = ioloop.IOLoop.current()
web_pages = loop.run_sync(fetch_and_handle)
return web_pages
my_urls = ['url1.com', 'url2.com', 'url100000.com']
responses = main(my_urls)
print(responses[0])
最简单的方法是使用Python的内置线程库。它们不是“真正的”/内核线程。它们有问题(比如序列化),但足够好了。你需要一个队列和线程池。这里有一个选项,但是编写自己的选项很简单。您无法并行处理所有100,000个调用,但可以同时发出100个(或左右)调用。
推荐文章
- 为什么这个用于初始化列表列表的代码明显地将列表链接在一起?
- 在Python中,在函数内部导入时会发生什么?
- 用Python列表中的值创建一个.csv文件
- 在Python中哪个更快:x**。5还是math.sqrt(x)?
- 有哪些好的Python ORM解决方案?
- 如何在f字符串中转义括号?
- Python void返回类型注释
- 如何为python模块的argparse部分编写测试?
- 在python中是否有用于均方根误差(RMSE)的库函数?
- 如何从matplotlib (pyplot。Figure vs matplotlib。figure) (frameon=False matplotlib中有问题)
- django test app error -在创建测试数据库时出现错误:创建数据库的权限被拒绝
- 识别使用pip安装的python包的依赖关系
- 从字符串变量导入模块
- 如何删除Python中的前导空白?
- python中的assertEquals和assertEqual