I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.


当前回答

考虑使用风车,虽然风车可能不能做那么多线程。

您可以在5台机器上使用手卷Python脚本,每台机器使用端口40000-60000连接出站,打开100,000个端口连接。

另外,使用一个线程良好的QA应用程序(如OpenSTA)做一个示例测试可能会有所帮助,以了解每个服务器可以处理多少。

另外,试着在LWP::ConnCache类中使用简单的Perl。这样您可能会获得更好的性能(更多的连接)。

其他回答

我发现使用tornado包是最快和最简单的方法来实现这一点:

from tornado import ioloop, httpclient, gen


def main(urls):
    """
    Asynchronously download the HTML contents of a list of URLs.
    :param urls: A list of URLs to download.
    :return: List of response objects, one for each URL.
    """

    @gen.coroutine
    def fetch_and_handle():
        httpclient.AsyncHTTPClient.configure(None, defaults=dict(user_agent='MyUserAgent'))
        http_client = httpclient.AsyncHTTPClient()
        waiter = gen.WaitIterator(*[http_client.fetch(url, raise_error=False, method='HEAD')
                                    for url in urls])
        results = []
        # Wait for the jobs to complete
        while not waiter.done():
            try:
                response = yield waiter.next()
            except httpclient.HTTPError as e:
                print(f'Non-200 HTTP response returned: {e}')
                continue
            except Exception as e:
                print(f'An unexpected error occurred querying: {e}')
                continue
            else:
                print(f'URL \'{response.request.url}\' has status code <{response.code}>')
                results.append(response)
        return results

    loop = ioloop.IOLoop.current()
    web_pages = loop.run_sync(fetch_and_handle)

    return web_pages

my_urls = ['url1.com', 'url2.com', 'url100000.com']
responses = main(my_urls)
print(responses[0])

Scrapy框架将快速和专业地解决您的问题。它还将缓存所有请求,以便稍后可以重新运行失败的请求。

将该脚本保存为quotes_spider.py。

# quote_spiders.py
import json
import string
import scrapy
from scrapy.crawler import CrawlerProcess
from scrapy.item import Item, Field

class TextCleaningPipeline(object):
    def _clean_text(self, text):
        text = text.replace('“', '').replace('”', '')
        table = str.maketrans({key: None for key in string.punctuation})
        clean_text = text.translate(table)
        return clean_text.lower()

    def process_item(self, item, spider):
        item['text'] = self._clean_text(item['text'])
        return item

class JsonWriterPipeline(object):
    def open_spider(self, spider):
        self.file = open(spider.settings['JSON_FILE'], 'a')

    def close_spider(self, spider):
        self.file.close()

    def process_item(self, item, spider):
        line = json.dumps(dict(item)) + "\n"
        self.file.write(line)
        return item

class QuoteItem(Item):
    text = Field()
    author = Field()
    tags = Field()
    spider = Field()

class QuoteSpider(scrapy.Spider):
    name = "quotes"

    def start_requests(self):
        urls = [
            'http://quotes.toscrape.com/page/1/',
            'http://quotes.toscrape.com/page/2/',
            # ...
        ]
        for url in urls:
            yield scrapy.Request(url=url, callback=self.parse)

    def parse(self, response):
        for quote in response.css('div.quote'):
            item = QuoteItem()
            item['text'] = quote.css('span.text::text').get()
            item['author'] = quote.css('small.author::text').get()
            item['tags'] = quote.css('div.tags a.tag::text').getall()
            item['spider'] = self.name
            yield item

if __name__ == '__main__':
    settings = dict()
    settings['USER_AGENT'] = 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)'
    settings['HTTPCACHE_ENABLED'] = True
    settings['CONCURRENT_REQUESTS'] = 20
    settings['CONCURRENT_REQUESTS_PER_DOMAIN'] = 20
    settings['JSON_FILE'] = 'items.jl'
    settings['ITEM_PIPELINES'] = dict()
    settings['ITEM_PIPELINES']['__main__.TextCleaningPipeline'] = 800
    settings['ITEM_PIPELINES']['__main__.JsonWriterPipeline'] = 801

    process = CrawlerProcess(settings=settings)
    process.crawl(QuoteSpider)
    process.start()

紧随其后的是

$ pip install Scrapy
$ python quote_spiders.py 

为了微调scraper,相应地调整CONCURRENT_REQUESTS和CONCURRENT_REQUESTS_PER_DOMAIN设置。

(工具)

Apache Bench是您所需要的全部。—用于测量HTTP web服务器性能的命令行计算机程序

给你一篇不错的博客文章:https://www.petefreitag.com/item/689.cfm(来自Pete Freitag)

(下一个项目的自我提示)

Python 3解决方案只使用请求。它是最简单且快速的,不需要多处理或复杂的异步库。

最重要的方面是重用连接,特别是对于HTTPS (TLS需要额外的往返才能打开)。注意,连接是特定于子域的。如果在多个域上抓取多个页面,则可以对url列表进行排序,以最大化连接重用(它有效地按域进行排序)。

当给定足够的线程时,它将与任何异步代码一样快。(请求在等待响应时释放python GIL)。

[带有日志记录和错误处理的生产等级代码]

import logging
import requests
import time
from concurrent.futures import ThreadPoolExecutor, as_completed

# source: https://stackoverflow.com/a/68583332/5994461

THREAD_POOL = 16

# This is how to create a reusable connection pool with python requests.
session = requests.Session()
session.mount(
    'https://',
    requests.adapters.HTTPAdapter(pool_maxsize=THREAD_POOL,
                                  max_retries=3,
                                  pool_block=True)
)

def get(url):
    response = session.get(url)
    logging.info("request was completed in %s seconds [%s]", response.elapsed.total_seconds(), response.url)
    if response.status_code != 200:
        logging.error("request failed, error code %s [%s]", response.status_code, response.url)
    if 500 <= response.status_code < 600:
        # server is overloaded? give it a break
        time.sleep(5)
    return response

def download(urls):
    with ThreadPoolExecutor(max_workers=THREAD_POOL) as executor:
        # wrap in a list() to wait for all requests to complete
        for response in list(executor.map(get, urls)):
            if response.status_code == 200:
                print(response.content)

def main():
    logging.basicConfig(
        format='%(asctime)s.%(msecs)03d %(levelname)-8s %(message)s',
        level=logging.INFO,
        datefmt='%Y-%m-%d %H:%M:%S'
    )

    urls = [
        "https://httpstat.us/200",
        "https://httpstat.us/200",
        "https://httpstat.us/200",
        "https://httpstat.us/404",
        "https://httpstat.us/503"
    ]

    download(urls)

if __name__ == "__main__":
    main()

最简单的方法是使用Python的内置线程库。它们不是“真正的”/内核线程。它们有问题(比如序列化),但足够好了。你需要一个队列和线程池。这里有一个选项,但是编写自己的选项很简单。您无法并行处理所有100,000个调用,但可以同时发出100个(或左右)调用。