I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.


当前回答

下面是一个“异步”解决方案,它不使用asyncio,而是使用asyncio使用的低级机制(在Linux上):select()。(或者asyncio可能使用poll或epoll,但这是类似的原理。)

它是对PyCurl示例的稍微修改版本。

(为了简单起见,它多次请求相同的URL,但您可以轻松地修改它以检索一系列不同的URL。)

(另一个轻微的修改可以使这个检索相同的URL作为一个无限循环。提示:将while url和句柄更改为while句柄,将while nprocessed<nurls更改为while 1。)

import pycurl,io,gzip,signal, time, random
signal.signal(signal.SIGPIPE, signal.SIG_IGN)  # NOTE! We should ignore SIGPIPE when using pycurl.NOSIGNAL - see the libcurl tutorial for more info

NCONNS = 2  # Number of concurrent GET requests
url    = 'example.com'
urls   = [url for i in range(0x7*NCONNS)]  # Copy the same URL over and over

# Check args
nurls  = len(urls)
NCONNS = min(NCONNS, nurls)
print("\x1b[32m%s \x1b[0m(compiled against 0x%x)" % (pycurl.version, pycurl.COMPILE_LIBCURL_VERSION_NUM))
print(f'\x1b[37m{nurls} \x1b[91m@ \x1b[92m{NCONNS}\x1b[0m')

# Pre-allocate a list of curl objects
m         = pycurl.CurlMulti()
m.handles = []
for i in range(NCONNS):
  c = pycurl.Curl()
  c.setopt(pycurl.FOLLOWLOCATION,  1)
  c.setopt(pycurl.MAXREDIRS,       5)
  c.setopt(pycurl.CONNECTTIMEOUT,  30)
  c.setopt(pycurl.TIMEOUT,         300)
  c.setopt(pycurl.NOSIGNAL,        1)
  m.handles.append(c)

handles    = m.handles  # MUST make a copy?!
nprocessed = 0
while nprocessed<nurls:

  while urls and handles:  # If there is an url to process and a free curl object, add to multi stack
    url   = urls.pop(0)
    c     = handles.pop()
    c.buf = io.BytesIO()
    c.url = url  # store some info
    c.t0  = time.perf_counter()
    c.setopt(pycurl.URL,        c.url)
    c.setopt(pycurl.WRITEDATA,  c.buf)
    c.setopt(pycurl.HTTPHEADER, [f'user-agent: {random.randint(0,(1<<256)-1):x}', 'accept-encoding: gzip, deflate', 'connection: keep-alive', 'keep-alive: timeout=10, max=1000'])
    m.add_handle(c)

  while 1:  # Run the internal curl state machine for the multi stack
    ret, num_handles = m.perform()
    if ret!=pycurl.E_CALL_MULTI_PERFORM:  break

  while 1:  # Check for curl objects which have terminated, and add them to the handles
    nq, ok_list, ko_list = m.info_read()
    for c in ok_list:
      m.remove_handle(c)
      t1 = time.perf_counter()
      reply = gzip.decompress(c.buf.getvalue())
      print(f'\x1b[33mGET  \x1b[32m{t1-c.t0:.3f}  \x1b[37m{len(reply):9,}  \x1b[0m{reply[:32]}...')  # \x1b[35m{psutil.Process(os.getpid()).memory_info().rss:,} \x1b[0mbytes')
      handles.append(c)
    for c, errno, errmsg in ko_list:
      m.remove_handle(c)
      print('\x1b[31mFAIL {c.url} {errno} {errmsg}')
      handles.append(c)
    nprocessed = nprocessed + len(ok_list) + len(ko_list)
    if nq==0: break

  m.select(1.0)  # Currently no more I/O is pending, could do something in the meantime (display a progress bar, etc.). We just call select() to sleep until some more data is available.

for c in m.handles:
  c.close()
m.close()

其他回答

一个解决方案:

from twisted.internet import reactor, threads
from urlparse import urlparse
import httplib
import itertools


concurrent = 200
finished=itertools.count(1)
reactor.suggestThreadPoolSize(concurrent)

def getStatus(ourl):
    url = urlparse(ourl)
    conn = httplib.HTTPConnection(url.netloc)   
    conn.request("HEAD", url.path)
    res = conn.getresponse()
    return res.status

def processResponse(response,url):
    print response, url
    processedOne()

def processError(error,url):
    print "error", url#, error
    processedOne()

def processedOne():
    if finished.next()==added:
        reactor.stop()

def addTask(url):
    req = threads.deferToThread(getStatus, url)
    req.addCallback(processResponse, url)
    req.addErrback(processError, url)   

added=0
for url in open('urllist.txt'):
    added+=1
    addTask(url.strip())

try:
    reactor.run()
except KeyboardInterrupt:
    reactor.stop()

Testtime:

[kalmi@ubi1:~] wc -l urllist.txt
10000 urllist.txt
[kalmi@ubi1:~] time python f.py > /dev/null 

real    1m10.682s
user    0m16.020s
sys 0m10.330s
[kalmi@ubi1:~] head -n 6 urllist.txt
http://www.google.com
http://www.bix.hu
http://www.godaddy.com
http://www.google.com
http://www.bix.hu
http://www.godaddy.com
[kalmi@ubi1:~] python f.py | head -n 6
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu

Pingtime:

bix.hu is ~10 ms away from me
godaddy.com: ~170 ms
google.com: ~30 ms

Scrapy框架将快速和专业地解决您的问题。它还将缓存所有请求,以便稍后可以重新运行失败的请求。

将该脚本保存为quotes_spider.py。

# quote_spiders.py
import json
import string
import scrapy
from scrapy.crawler import CrawlerProcess
from scrapy.item import Item, Field

class TextCleaningPipeline(object):
    def _clean_text(self, text):
        text = text.replace('“', '').replace('”', '')
        table = str.maketrans({key: None for key in string.punctuation})
        clean_text = text.translate(table)
        return clean_text.lower()

    def process_item(self, item, spider):
        item['text'] = self._clean_text(item['text'])
        return item

class JsonWriterPipeline(object):
    def open_spider(self, spider):
        self.file = open(spider.settings['JSON_FILE'], 'a')

    def close_spider(self, spider):
        self.file.close()

    def process_item(self, item, spider):
        line = json.dumps(dict(item)) + "\n"
        self.file.write(line)
        return item

class QuoteItem(Item):
    text = Field()
    author = Field()
    tags = Field()
    spider = Field()

class QuoteSpider(scrapy.Spider):
    name = "quotes"

    def start_requests(self):
        urls = [
            'http://quotes.toscrape.com/page/1/',
            'http://quotes.toscrape.com/page/2/',
            # ...
        ]
        for url in urls:
            yield scrapy.Request(url=url, callback=self.parse)

    def parse(self, response):
        for quote in response.css('div.quote'):
            item = QuoteItem()
            item['text'] = quote.css('span.text::text').get()
            item['author'] = quote.css('small.author::text').get()
            item['tags'] = quote.css('div.tags a.tag::text').getall()
            item['spider'] = self.name
            yield item

if __name__ == '__main__':
    settings = dict()
    settings['USER_AGENT'] = 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)'
    settings['HTTPCACHE_ENABLED'] = True
    settings['CONCURRENT_REQUESTS'] = 20
    settings['CONCURRENT_REQUESTS_PER_DOMAIN'] = 20
    settings['JSON_FILE'] = 'items.jl'
    settings['ITEM_PIPELINES'] = dict()
    settings['ITEM_PIPELINES']['__main__.TextCleaningPipeline'] = 800
    settings['ITEM_PIPELINES']['__main__.JsonWriterPipeline'] = 801

    process = CrawlerProcess(settings=settings)
    process.crawl(QuoteSpider)
    process.start()

紧随其后的是

$ pip install Scrapy
$ python quote_spiders.py 

为了微调scraper,相应地调整CONCURRENT_REQUESTS和CONCURRENT_REQUESTS_PER_DOMAIN设置。

考虑使用风车,虽然风车可能不能做那么多线程。

您可以在5台机器上使用手卷Python脚本,每台机器使用端口40000-60000连接出站,打开100,000个端口连接。

另外,使用一个线程良好的QA应用程序(如OpenSTA)做一个示例测试可能会有所帮助,以了解每个服务器可以处理多少。

另外,试着在LWP::ConnCache类中使用简单的Perl。这样您可能会获得更好的性能(更多的连接)。

如果您希望获得尽可能好的性能,您可能会考虑使用异步I/O而不是线程。与成千上万个操作系统线程相关的开销是不小的,Python解释器内的上下文切换甚至增加了更多的开销。线程当然可以完成工作,但我怀疑异步路由将提供更好的整体性能。

具体来说,我建议使用Twisted库中的异步web客户端(http://www.twistedmatrix.com)。它有一个公认的陡峭的学习曲线,但一旦你很好地掌握了Twisted的异步编程风格,它就很容易使用。

Twisted的异步web客户端API的HowTo可以在以下地址找到:

http://twistedmatrix.com/documents/current/web/howto/client.html

(下一个项目的自我提示)

Python 3解决方案只使用请求。它是最简单且快速的,不需要多处理或复杂的异步库。

最重要的方面是重用连接,特别是对于HTTPS (TLS需要额外的往返才能打开)。注意,连接是特定于子域的。如果在多个域上抓取多个页面,则可以对url列表进行排序,以最大化连接重用(它有效地按域进行排序)。

当给定足够的线程时,它将与任何异步代码一样快。(请求在等待响应时释放python GIL)。

[带有日志记录和错误处理的生产等级代码]

import logging
import requests
import time
from concurrent.futures import ThreadPoolExecutor, as_completed

# source: https://stackoverflow.com/a/68583332/5994461

THREAD_POOL = 16

# This is how to create a reusable connection pool with python requests.
session = requests.Session()
session.mount(
    'https://',
    requests.adapters.HTTPAdapter(pool_maxsize=THREAD_POOL,
                                  max_retries=3,
                                  pool_block=True)
)

def get(url):
    response = session.get(url)
    logging.info("request was completed in %s seconds [%s]", response.elapsed.total_seconds(), response.url)
    if response.status_code != 200:
        logging.error("request failed, error code %s [%s]", response.status_code, response.url)
    if 500 <= response.status_code < 600:
        # server is overloaded? give it a break
        time.sleep(5)
    return response

def download(urls):
    with ThreadPoolExecutor(max_workers=THREAD_POOL) as executor:
        # wrap in a list() to wait for all requests to complete
        for response in list(executor.map(get, urls)):
            if response.status_code == 200:
                print(response.content)

def main():
    logging.basicConfig(
        format='%(asctime)s.%(msecs)03d %(levelname)-8s %(message)s',
        level=logging.INFO,
        datefmt='%Y-%m-%d %H:%M:%S'
    )

    urls = [
        "https://httpstat.us/200",
        "https://httpstat.us/200",
        "https://httpstat.us/200",
        "https://httpstat.us/404",
        "https://httpstat.us/503"
    ]

    download(urls)

if __name__ == "__main__":
    main()