I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.
当前回答
(工具)
Apache Bench是您所需要的全部。—用于测量HTTP web服务器性能的命令行计算机程序
给你一篇不错的博客文章:https://www.petefreitag.com/item/689.cfm(来自Pete Freitag)
其他回答
一个使用tornado的异步网络库解决方案
from tornado import ioloop, httpclient
i = 0
def handle_request(response):
print(response.code)
global i
i -= 1
if i == 0:
ioloop.IOLoop.instance().stop()
http_client = httpclient.AsyncHTTPClient()
for url in open('urls.txt'):
i += 1
http_client.fetch(url.strip(), handle_request, method='HEAD')
ioloop.IOLoop.instance().start()
这段代码使用非阻塞网络I/O,没有任何限制。它可以扩展到数万个打开的连接。它将在单个线程中运行,但比任何线程解决方案都要快。签出非阻塞I/O
自从2010年这篇文章发布以来,事情发生了很大的变化,我还没有尝试过所有其他的答案,但我尝试了一些,我发现使用python3.6对我来说这是最好的。
在AWS上运行时,我每秒可以获取大约150个独特的域名。
import concurrent.futures
import requests
import time
out = []
CONNECTIONS = 100
TIMEOUT = 5
tlds = open('../data/sample_1k.txt').read().splitlines()
urls = ['http://{}'.format(x) for x in tlds[1:]]
def load_url(url, timeout):
ans = requests.head(url, timeout=timeout)
return ans.status_code
with concurrent.futures.ThreadPoolExecutor(max_workers=CONNECTIONS) as executor:
future_to_url = (executor.submit(load_url, url, TIMEOUT) for url in urls)
time1 = time.time()
for future in concurrent.futures.as_completed(future_to_url):
try:
data = future.result()
except Exception as exc:
data = str(type(exc))
finally:
out.append(data)
print(str(len(out)),end="\r")
time2 = time.time()
print(f'Took {time2-time1:.2f} s')
下面是一个“异步”解决方案,它不使用asyncio,而是使用asyncio使用的低级机制(在Linux上):select()。(或者asyncio可能使用poll或epoll,但这是类似的原理。)
它是对PyCurl示例的稍微修改版本。
(为了简单起见,它多次请求相同的URL,但您可以轻松地修改它以检索一系列不同的URL。)
(另一个轻微的修改可以使这个检索相同的URL作为一个无限循环。提示:将while url和句柄更改为while句柄,将while nprocessed<nurls更改为while 1。)
import pycurl,io,gzip,signal, time, random
signal.signal(signal.SIGPIPE, signal.SIG_IGN) # NOTE! We should ignore SIGPIPE when using pycurl.NOSIGNAL - see the libcurl tutorial for more info
NCONNS = 2 # Number of concurrent GET requests
url = 'example.com'
urls = [url for i in range(0x7*NCONNS)] # Copy the same URL over and over
# Check args
nurls = len(urls)
NCONNS = min(NCONNS, nurls)
print("\x1b[32m%s \x1b[0m(compiled against 0x%x)" % (pycurl.version, pycurl.COMPILE_LIBCURL_VERSION_NUM))
print(f'\x1b[37m{nurls} \x1b[91m@ \x1b[92m{NCONNS}\x1b[0m')
# Pre-allocate a list of curl objects
m = pycurl.CurlMulti()
m.handles = []
for i in range(NCONNS):
c = pycurl.Curl()
c.setopt(pycurl.FOLLOWLOCATION, 1)
c.setopt(pycurl.MAXREDIRS, 5)
c.setopt(pycurl.CONNECTTIMEOUT, 30)
c.setopt(pycurl.TIMEOUT, 300)
c.setopt(pycurl.NOSIGNAL, 1)
m.handles.append(c)
handles = m.handles # MUST make a copy?!
nprocessed = 0
while nprocessed<nurls:
while urls and handles: # If there is an url to process and a free curl object, add to multi stack
url = urls.pop(0)
c = handles.pop()
c.buf = io.BytesIO()
c.url = url # store some info
c.t0 = time.perf_counter()
c.setopt(pycurl.URL, c.url)
c.setopt(pycurl.WRITEDATA, c.buf)
c.setopt(pycurl.HTTPHEADER, [f'user-agent: {random.randint(0,(1<<256)-1):x}', 'accept-encoding: gzip, deflate', 'connection: keep-alive', 'keep-alive: timeout=10, max=1000'])
m.add_handle(c)
while 1: # Run the internal curl state machine for the multi stack
ret, num_handles = m.perform()
if ret!=pycurl.E_CALL_MULTI_PERFORM: break
while 1: # Check for curl objects which have terminated, and add them to the handles
nq, ok_list, ko_list = m.info_read()
for c in ok_list:
m.remove_handle(c)
t1 = time.perf_counter()
reply = gzip.decompress(c.buf.getvalue())
print(f'\x1b[33mGET \x1b[32m{t1-c.t0:.3f} \x1b[37m{len(reply):9,} \x1b[0m{reply[:32]}...') # \x1b[35m{psutil.Process(os.getpid()).memory_info().rss:,} \x1b[0mbytes')
handles.append(c)
for c, errno, errmsg in ko_list:
m.remove_handle(c)
print('\x1b[31mFAIL {c.url} {errno} {errmsg}')
handles.append(c)
nprocessed = nprocessed + len(ok_list) + len(ko_list)
if nq==0: break
m.select(1.0) # Currently no more I/O is pending, could do something in the meantime (display a progress bar, etc.). We just call select() to sleep until some more data is available.
for c in m.handles:
c.close()
m.close()
Scrapy框架将快速和专业地解决您的问题。它还将缓存所有请求,以便稍后可以重新运行失败的请求。
将该脚本保存为quotes_spider.py。
# quote_spiders.py
import json
import string
import scrapy
from scrapy.crawler import CrawlerProcess
from scrapy.item import Item, Field
class TextCleaningPipeline(object):
def _clean_text(self, text):
text = text.replace('“', '').replace('”', '')
table = str.maketrans({key: None for key in string.punctuation})
clean_text = text.translate(table)
return clean_text.lower()
def process_item(self, item, spider):
item['text'] = self._clean_text(item['text'])
return item
class JsonWriterPipeline(object):
def open_spider(self, spider):
self.file = open(spider.settings['JSON_FILE'], 'a')
def close_spider(self, spider):
self.file.close()
def process_item(self, item, spider):
line = json.dumps(dict(item)) + "\n"
self.file.write(line)
return item
class QuoteItem(Item):
text = Field()
author = Field()
tags = Field()
spider = Field()
class QuoteSpider(scrapy.Spider):
name = "quotes"
def start_requests(self):
urls = [
'http://quotes.toscrape.com/page/1/',
'http://quotes.toscrape.com/page/2/',
# ...
]
for url in urls:
yield scrapy.Request(url=url, callback=self.parse)
def parse(self, response):
for quote in response.css('div.quote'):
item = QuoteItem()
item['text'] = quote.css('span.text::text').get()
item['author'] = quote.css('small.author::text').get()
item['tags'] = quote.css('div.tags a.tag::text').getall()
item['spider'] = self.name
yield item
if __name__ == '__main__':
settings = dict()
settings['USER_AGENT'] = 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)'
settings['HTTPCACHE_ENABLED'] = True
settings['CONCURRENT_REQUESTS'] = 20
settings['CONCURRENT_REQUESTS_PER_DOMAIN'] = 20
settings['JSON_FILE'] = 'items.jl'
settings['ITEM_PIPELINES'] = dict()
settings['ITEM_PIPELINES']['__main__.TextCleaningPipeline'] = 800
settings['ITEM_PIPELINES']['__main__.JsonWriterPipeline'] = 801
process = CrawlerProcess(settings=settings)
process.crawl(QuoteSpider)
process.start()
紧随其后的是
$ pip install Scrapy
$ python quote_spiders.py
为了微调scraper,相应地调整CONCURRENT_REQUESTS和CONCURRENT_REQUESTS_PER_DOMAIN设置。
最简单的方法是使用Python的内置线程库。它们不是“真正的”/内核线程。它们有问题(比如序列化),但足够好了。你需要一个队列和线程池。这里有一个选项,但是编写自己的选项很简单。您无法并行处理所有100,000个调用,但可以同时发出100个(或左右)调用。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录