I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.
当前回答
一个解决方案:
from twisted.internet import reactor, threads
from urlparse import urlparse
import httplib
import itertools
concurrent = 200
finished=itertools.count(1)
reactor.suggestThreadPoolSize(concurrent)
def getStatus(ourl):
url = urlparse(ourl)
conn = httplib.HTTPConnection(url.netloc)
conn.request("HEAD", url.path)
res = conn.getresponse()
return res.status
def processResponse(response,url):
print response, url
processedOne()
def processError(error,url):
print "error", url#, error
processedOne()
def processedOne():
if finished.next()==added:
reactor.stop()
def addTask(url):
req = threads.deferToThread(getStatus, url)
req.addCallback(processResponse, url)
req.addErrback(processError, url)
added=0
for url in open('urllist.txt'):
added+=1
addTask(url.strip())
try:
reactor.run()
except KeyboardInterrupt:
reactor.stop()
Testtime:
[kalmi@ubi1:~] wc -l urllist.txt
10000 urllist.txt
[kalmi@ubi1:~] time python f.py > /dev/null
real 1m10.682s
user 0m16.020s
sys 0m10.330s
[kalmi@ubi1:~] head -n 6 urllist.txt
http://www.google.com
http://www.bix.hu
http://www.godaddy.com
http://www.google.com
http://www.bix.hu
http://www.godaddy.com
[kalmi@ubi1:~] python f.py | head -n 6
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
200 http://www.bix.hu
Pingtime:
bix.hu is ~10 ms away from me
godaddy.com: ~170 ms
google.com: ~30 ms
其他回答
自从2010年这篇文章发布以来,事情发生了很大的变化,我还没有尝试过所有其他的答案,但我尝试了一些,我发现使用python3.6对我来说这是最好的。
在AWS上运行时,我每秒可以获取大约150个独特的域名。
import concurrent.futures
import requests
import time
out = []
CONNECTIONS = 100
TIMEOUT = 5
tlds = open('../data/sample_1k.txt').read().splitlines()
urls = ['http://{}'.format(x) for x in tlds[1:]]
def load_url(url, timeout):
ans = requests.head(url, timeout=timeout)
return ans.status_code
with concurrent.futures.ThreadPoolExecutor(max_workers=CONNECTIONS) as executor:
future_to_url = (executor.submit(load_url, url, TIMEOUT) for url in urls)
time1 = time.time()
for future in concurrent.futures.as_completed(future_to_url):
try:
data = future.result()
except Exception as exc:
data = str(type(exc))
finally:
out.append(data)
print(str(len(out)),end="\r")
time2 = time.time()
print(f'Took {time2-time1:.2f} s')
使用grequests,它是requests + Gevent模块的组合。
GRequests允许您使用带有Gevent的Requests来轻松地生成异步HTTP请求。
用法很简单:
import grequests
urls = [
'http://www.heroku.com',
'http://tablib.org',
'http://httpbin.org',
'http://python-requests.org',
'http://kennethreitz.com'
]
创建一组未发送的请求:
>>> rs = (grequests.get(u) for u in urls)
同时发送:
>>> grequests.map(rs)
[<Response [200]>, <Response [200]>, <Response [200]>, <Response [200]>, <Response [200]>]
最简单的方法是使用Python的内置线程库。它们不是“真正的”/内核线程。它们有问题(比如序列化),但足够好了。你需要一个队列和线程池。这里有一个选项,但是编写自己的选项很简单。您无法并行处理所有100,000个调用,但可以同时发出100个(或左右)调用。
(工具)
Apache Bench是您所需要的全部。—用于测量HTTP web服务器性能的命令行计算机程序
给你一篇不错的博客文章:https://www.petefreitag.com/item/689.cfm(来自Pete Freitag)
使用线程池是一个很好的选择,这将使这相当容易。不幸的是,python并没有一个标准库来简化线程池。但这里有一个不错的图书馆,你应该开始: http://www.chrisarndt.de/projects/threadpool/
来自他们网站的代码示例:
pool = ThreadPool(poolsize)
requests = makeRequests(some_callable, list_of_args, callback)
[pool.putRequest(req) for req in requests]
pool.wait()
希望这能有所帮助。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录