I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.
当前回答
(下一个项目的自我提示)
Python 3解决方案只使用请求。它是最简单且快速的,不需要多处理或复杂的异步库。
最重要的方面是重用连接,特别是对于HTTPS (TLS需要额外的往返才能打开)。注意,连接是特定于子域的。如果在多个域上抓取多个页面,则可以对url列表进行排序,以最大化连接重用(它有效地按域进行排序)。
当给定足够的线程时,它将与任何异步代码一样快。(请求在等待响应时释放python GIL)。
[带有日志记录和错误处理的生产等级代码]
import logging
import requests
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
# source: https://stackoverflow.com/a/68583332/5994461
THREAD_POOL = 16
# This is how to create a reusable connection pool with python requests.
session = requests.Session()
session.mount(
'https://',
requests.adapters.HTTPAdapter(pool_maxsize=THREAD_POOL,
max_retries=3,
pool_block=True)
)
def get(url):
response = session.get(url)
logging.info("request was completed in %s seconds [%s]", response.elapsed.total_seconds(), response.url)
if response.status_code != 200:
logging.error("request failed, error code %s [%s]", response.status_code, response.url)
if 500 <= response.status_code < 600:
# server is overloaded? give it a break
time.sleep(5)
return response
def download(urls):
with ThreadPoolExecutor(max_workers=THREAD_POOL) as executor:
# wrap in a list() to wait for all requests to complete
for response in list(executor.map(get, urls)):
if response.status_code == 200:
print(response.content)
def main():
logging.basicConfig(
format='%(asctime)s.%(msecs)03d %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S'
)
urls = [
"https://httpstat.us/200",
"https://httpstat.us/200",
"https://httpstat.us/200",
"https://httpstat.us/404",
"https://httpstat.us/503"
]
download(urls)
if __name__ == "__main__":
main()
其他回答
线程绝对不是这里的答案。它们将提供进程和内核瓶颈,以及吞吐量限制,如果总体目标是“最快的方式”,这些限制是不可接受的。
稍微扭曲一点,它的异步HTTP客户端会给你更好的结果。
对于您的情况,线程可能会做的技巧,因为您可能会花费大部分时间等待响应。标准库中有一些有用的模块,如Queue,可能会有所帮助。
我以前做过类似的并行下载文件的事情,对我来说已经足够好了,但它不是你所说的那种规模。
如果您的任务对cpu的限制更大,您可能需要考虑multiprocessing模块,它将允许您利用更多的cpu /内核/线程(更多的进程不会相互阻塞,因为锁定是每个进程)
(工具)
Apache Bench是您所需要的全部。—用于测量HTTP web服务器性能的命令行计算机程序
给你一篇不错的博客文章:https://www.petefreitag.com/item/689.cfm(来自Pete Freitag)
创建epoll对象, 打开许多客户端TCP套接字, 调整他们的发送缓冲区比请求头多一点, 发送一个请求头-它应该是即时的,只是放置到缓冲区, 在epoll对象中注册套接字 在epoll obect上做。poll, 从.poll中读取每个套接字的前3个字节, 将它们写入sys。Stdout后面跟着\n(不刷新), 关闭客户端套接字。
限制同时打开的套接字数量-在创建套接字时处理错误。只有当另一个套接字关闭时才创建新的套接字。 调整操作系统限制。 尝试分成几个(不是很多)进程:这可能有助于更有效地使用CPU。
如果您希望获得尽可能好的性能,您可能会考虑使用异步I/O而不是线程。与成千上万个操作系统线程相关的开销是不小的,Python解释器内的上下文切换甚至增加了更多的开销。线程当然可以完成工作,但我怀疑异步路由将提供更好的整体性能。
具体来说,我建议使用Twisted库中的异步web客户端(http://www.twistedmatrix.com)。它有一个公认的陡峭的学习曲线,但一旦你很好地掌握了Twisted的异步编程风格,它就很容易使用。
Twisted的异步web客户端API的HowTo可以在以下地址找到:
http://twistedmatrix.com/documents/current/web/howto/client.html
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录