I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.


当前回答

线程绝对不是这里的答案。它们将提供进程和内核瓶颈,以及吞吐量限制,如果总体目标是“最快的方式”,这些限制是不可接受的。

稍微扭曲一点,它的异步HTTP客户端会给你更好的结果。

其他回答

最简单的方法是使用Python的内置线程库。它们不是“真正的”/内核线程。它们有问题(比如序列化),但足够好了。你需要一个队列和线程池。这里有一个选项,但是编写自己的选项很简单。您无法并行处理所有100,000个调用,但可以同时发出100个(或左右)调用。

创建epoll对象, 打开许多客户端TCP套接字, 调整他们的发送缓冲区比请求头多一点, 发送一个请求头-它应该是即时的,只是放置到缓冲区, 在epoll对象中注册套接字 在epoll obect上做。poll, 从.poll中读取每个套接字的前3个字节, 将它们写入sys。Stdout后面跟着\n(不刷新), 关闭客户端套接字。

限制同时打开的套接字数量-在创建套接字时处理错误。只有当另一个套接字关闭时才创建新的套接字。 调整操作系统限制。 尝试分成几个(不是很多)进程:这可能有助于更有效地使用CPU。

自从2010年这篇文章发布以来,事情发生了很大的变化,我还没有尝试过所有其他的答案,但我尝试了一些,我发现使用python3.6对我来说这是最好的。

在AWS上运行时,我每秒可以获取大约150个独特的域名。

import concurrent.futures
import requests
import time

out = []
CONNECTIONS = 100
TIMEOUT = 5

tlds = open('../data/sample_1k.txt').read().splitlines()
urls = ['http://{}'.format(x) for x in tlds[1:]]

def load_url(url, timeout):
    ans = requests.head(url, timeout=timeout)
    return ans.status_code

with concurrent.futures.ThreadPoolExecutor(max_workers=CONNECTIONS) as executor:
    future_to_url = (executor.submit(load_url, url, TIMEOUT) for url in urls)
    time1 = time.time()
    for future in concurrent.futures.as_completed(future_to_url):
        try:
            data = future.result()
        except Exception as exc:
            data = str(type(exc))
        finally:
            out.append(data)

            print(str(len(out)),end="\r")

    time2 = time.time()

print(f'Took {time2-time1:.2f} s')
pip install requests-threads

使用实例使用async/await - send 100个并发请求

from requests_threads import AsyncSession

session = AsyncSession(n=100)

async def _main():
    rs = []
    for _ in range(100):
        rs.append(await session.get('http://httpbin.org/get'))
    print(rs)

if __name__ == '__main__':
    session.run(_main)

此示例仅适用于Python 3。您还可以提供自己的asyncio事件循环!

使用实例Twisted

from twisted.internet.defer import inlineCallbacks
from twisted.internet.task import react
from requests_threads import AsyncSession

session = AsyncSession(n=100)

@inlineCallbacks
def main(reactor):
    responses = []
    for i in range(100):
        responses.append(session.get('http://httpbin.org/get'))

    for response in responses:
        r = yield response
        print(r)

if __name__ == '__main__':
    react(main)

这个例子在Python 2和Python 3上都可以运行。

也许这对我的回购有帮助,一个基本的例子, 用python编写快速异步HTTP请求

如果您希望获得尽可能好的性能,您可能会考虑使用异步I/O而不是线程。与成千上万个操作系统线程相关的开销是不小的,Python解释器内的上下文切换甚至增加了更多的开销。线程当然可以完成工作,但我怀疑异步路由将提供更好的整体性能。

具体来说,我建议使用Twisted库中的异步web客户端(http://www.twistedmatrix.com)。它有一个公认的陡峭的学习曲线,但一旦你很好地掌握了Twisted的异步编程风格,它就很容易使用。

Twisted的异步web客户端API的HowTo可以在以下地址找到:

http://twistedmatrix.com/documents/current/web/howto/client.html