I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.


当前回答

如果您希望获得尽可能好的性能,您可能会考虑使用异步I/O而不是线程。与成千上万个操作系统线程相关的开销是不小的,Python解释器内的上下文切换甚至增加了更多的开销。线程当然可以完成工作,但我怀疑异步路由将提供更好的整体性能。

具体来说,我建议使用Twisted库中的异步web客户端(http://www.twistedmatrix.com)。它有一个公认的陡峭的学习曲线,但一旦你很好地掌握了Twisted的异步编程风格,它就很容易使用。

Twisted的异步web客户端API的HowTo可以在以下地址找到:

http://twistedmatrix.com/documents/current/web/howto/client.html

其他回答

最简单的方法是使用Python的内置线程库。它们不是“真正的”/内核线程。它们有问题(比如序列化),但足够好了。你需要一个队列和线程池。这里有一个选项,但是编写自己的选项很简单。您无法并行处理所有100,000个调用,但可以同时发出100个(或左右)调用。

使用线程池是一个很好的选择,这将使这相当容易。不幸的是,python并没有一个标准库来简化线程池。但这里有一个不错的图书馆,你应该开始: http://www.chrisarndt.de/projects/threadpool/

来自他们网站的代码示例:

pool = ThreadPool(poolsize)
requests = makeRequests(some_callable, list_of_args, callback)
[pool.putRequest(req) for req in requests]
pool.wait()

希望这能有所帮助。

使用grequests,它是requests + Gevent模块的组合。

GRequests允许您使用带有Gevent的Requests来轻松地生成异步HTTP请求。

用法很简单:

import grequests

urls = [
   'http://www.heroku.com',
   'http://tablib.org',
   'http://httpbin.org',
   'http://python-requests.org',
   'http://kennethreitz.com'
]

创建一组未发送的请求:

>>> rs = (grequests.get(u) for u in urls)

同时发送:

>>> grequests.map(rs)
[<Response [200]>, <Response [200]>, <Response [200]>, <Response [200]>, <Response [200]>]

创建epoll对象, 打开许多客户端TCP套接字, 调整他们的发送缓冲区比请求头多一点, 发送一个请求头-它应该是即时的,只是放置到缓冲区, 在epoll对象中注册套接字 在epoll obect上做。poll, 从.poll中读取每个套接字的前3个字节, 将它们写入sys。Stdout后面跟着\n(不刷新), 关闭客户端套接字。

限制同时打开的套接字数量-在创建套接字时处理错误。只有当另一个套接字关闭时才创建新的套接字。 调整操作系统限制。 尝试分成几个(不是很多)进程:这可能有助于更有效地使用CPU。

对于您的情况,线程可能会做的技巧,因为您可能会花费大部分时间等待响应。标准库中有一些有用的模块,如Queue,可能会有所帮助。

我以前做过类似的并行下载文件的事情,对我来说已经足够好了,但它不是你所说的那种规模。

如果您的任务对cpu的限制更大,您可能需要考虑multiprocessing模块,它将允许您利用更多的cpu /内核/线程(更多的进程不会相互阻塞,因为锁定是每个进程)