地图提供商(如谷歌或Yahoo!地图)指示方向?

I mean, they probably have real-world data in some form, certainly including distances but also perhaps things like driving speeds, presence of sidewalks, train schedules, etc. But suppose the data were in a simpler format, say a very large directed graph with edge weights reflecting distances. I want to be able to quickly compute directions from one arbitrary point to another. Sometimes these points will be close together (within one city) while sometimes they will be far apart (cross-country).

Graph algorithms like Dijkstra's algorithm will not work because the graph is enormous. Luckily, heuristic algorithms like A* will probably work. However, our data is very structured, and perhaps some kind of tiered approach might work? (For example, store precomputed directions between certain "key" points far apart, as well as some local directions. Then directions for two far-away points will involve local directions to a key points, global directions to another key point, and then local directions again.)

实践中实际使用的算法是什么?

PS:这个问题的动机是发现在线地图方向的怪癖。与三角形不等式相反,有时谷歌Maps认为X-Z比使用中间点(如X-Y-Z)花费的时间更长,距离更远。但也许他们的行走方向也会优化另一个参数?

pp。这是对三角不等式的另一个违反,这表明(对我来说)他们使用了某种分层方法:X-Z vs X-Y-Z。前者似乎使用了著名的塞瓦斯托波尔大道(Boulevard de Sebastopol),尽管它有点偏僻。

编辑:这两个例子似乎都不起作用了,但在最初的帖子发布时都起作用了。


当前回答

我对此有了更多的想法:

1)记住地图代表一个实体组织。存储每个交叉口的经纬度。除了目标方向上的点以外,你不需要检查太多。只有当你发现自己受阻时,你才需要超越这一点。如果你储存了大量的高级连接,你就可以进一步限制它们——通常情况下,你永远不会以偏离最终目的地的方式穿过其中任何一个连接。

2)根据有限的连通性将世界划分为一系列区域,定义区域之间的所有连通性点。找出您的源和目标所在的区域,从您的位置到每个连接点的起始和结束区域路由,以及连接点之间的区域映射。(我怀疑后者在很大程度上是事先计算好的。)

请注意,区域可以比大都市区域小。任何具有地形特征的城市(比如一条河)都是多个区域。

其他回答

只是解决三角形不等式的违反,希望他们优化的额外因素是常识。你不一定想要最短或最快的路线,因为这可能会导致混乱和破坏。如果你想让自己的路线更适合卡车行驶,并且能够应对每个卫星导航跟踪司机都沿着这些路线行驶的情况,那么你很快就可以放弃三角形不等式[1]。

如果Y是X和Z之间的一条狭窄的住宅街道,那么您可能只想在用户明确要求X-Y-Z时使用通过Y的快捷方式。如果他们要求X-Z,他们应该坚持走主干道,即使它有点远,需要更长的时间。这类似于Braess悖论——如果每个人都试图选择最短、最快的路线,那么随之而来的拥堵意味着这条路线不再是任何人最快的路线。从这里开始,我们将从图论转向博弈论。

事实上,当你允许单向道路并失去对称性要求时,任何产生的距离将是数学意义上的距离函数的希望都将破灭。失去三角不等式也只是在伤口上撒盐。

我以前没有在谷歌或微软或雅虎地图工作过,所以我不能告诉你他们是如何工作的。

然而,我确实为一家能源公司设计了一个定制的供应链优化系统,其中包括为他们的卡车车队提供调度和路由应用程序。然而,我们对路线的标准远比建筑、交通减速或车道封闭的地方更具体。

我们采用了一种称为ACO(蚁群优化)的技术来调度和路线卡车。该技术是一种人工智能技术,应用于旅行推销员问题来解决路由问题。ACO的技巧是基于路由的已知事实构建错误计算,以便图求解模型知道何时退出(当错误足够小时)。

你可以谷歌ACO或TSP找到更多关于这个技术。然而,我没有使用过任何开源AI工具,所以不能推荐一个(尽管我听说SWARM非常全面)。

全对最短路径算法将计算图中所有顶点之间的最短路径。这将允许预先计算路径,而不需要每次寻找源和目的地之间的最短路径时都计算路径。Floyd-Warshall算法是一种全对最短路径算法。

这个问题在过去几年中一直是一个活跃的研究领域。主要思想是对图进行一次预处理,以加快所有后续查询的速度。有了这些附加信息,行程可以很快计算出来。尽管如此,Dijkstra算法仍然是所有优化的基础。

Arachnid描述了双向搜索和基于层次信息的边缘修剪的用法。这些加速技术工作得很好,但最新的算法在任何方面都优于这些技术。使用目前的算法,在大陆公路网上计算最短路径的时间可大大少于1毫秒。快速实现未修改的Dijkstra算法大约需要10秒。

工程快速路线规划算法概述了该领域的研究进展。有关进一步信息,请参阅那篇论文的参考文献。

已知最快的算法不使用数据中关于道路层次状态的信息,即它是高速公路还是本地道路。相反,他们在预处理步骤中计算自己的层次结构,优化以加快路线规划。这种预计算可以用来精简搜索:在Dijkstra算法中,远离起点和目的地的缓慢道路不需要考虑。好处是非常好的性能和结果的正确性保证。

第一个优化的路线规划算法只处理静态道路网络,这意味着图中的边缘具有固定的成本值。这在实践中是不正确的,因为我们想要考虑交通堵塞或车辆相关限制等动态信息。最新的算法也可以处理这些问题,但仍有问题需要解决,研究还在继续。

如果您需要最短路径距离来计算TSP的解,那么您可能对包含源和目的地之间所有距离的矩阵感兴趣。为此,您可以考虑使用高速公路层次结构计算多对多最短路径。请注意,在过去的两年里,这已经通过更新的方法得到了改进。

我有点惊讶这里没有提到Floyd Warshall的算法。这个算法很像Dijkstra算法。它还有一个很好的特性,那就是它允许你计算,只要你想继续允许更多的中间顶点。因此,它自然会很快找到使用州际公路或高速公路的路线。