地图提供商(如谷歌或Yahoo!地图)指示方向?

I mean, they probably have real-world data in some form, certainly including distances but also perhaps things like driving speeds, presence of sidewalks, train schedules, etc. But suppose the data were in a simpler format, say a very large directed graph with edge weights reflecting distances. I want to be able to quickly compute directions from one arbitrary point to another. Sometimes these points will be close together (within one city) while sometimes they will be far apart (cross-country).

Graph algorithms like Dijkstra's algorithm will not work because the graph is enormous. Luckily, heuristic algorithms like A* will probably work. However, our data is very structured, and perhaps some kind of tiered approach might work? (For example, store precomputed directions between certain "key" points far apart, as well as some local directions. Then directions for two far-away points will involve local directions to a key points, global directions to another key point, and then local directions again.)

实践中实际使用的算法是什么?

PS:这个问题的动机是发现在线地图方向的怪癖。与三角形不等式相反,有时谷歌Maps认为X-Z比使用中间点(如X-Y-Z)花费的时间更长,距离更远。但也许他们的行走方向也会优化另一个参数?

pp。这是对三角不等式的另一个违反,这表明(对我来说)他们使用了某种分层方法:X-Z vs X-Y-Z。前者似乎使用了著名的塞瓦斯托波尔大道(Boulevard de Sebastopol),尽管它有点偏僻。

编辑:这两个例子似乎都不起作用了,但在最初的帖子发布时都起作用了。


当前回答

以下是世界上最快的路由算法的比较和正确性:

http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf

下面是谷歌关于这个主题的技术演讲:

http://www.youtube.com/watch?v=-0ErpE8tQbw

以下是schultes所讨论的高速公路层次算法的实现(目前仅在柏林,我正在编写界面,移动版本也正在开发中):

http://tom.mapsforge.org/

其他回答

地图从不考虑整个地图。 我猜是:- 1. 根据你的位置,它们加载一个地方和那个地方的地标。 2. 当你搜索目的地时,他们会加载地图的另一部分,然后用两个地方做一个图,然后应用最短路径算法。

此外,还有一个重要的技术动态规划,我怀疑是用在最短路径的计算。你也可以参考一下。

像Dijkstra算法这样的图算法将无法工作,因为图是巨大的。

这个论点并不一定成立,因为Dijkstra通常不会查看完整的图,而只是一个非常小的子集(图的互联性越好,这个子集就越小)。

对于行为良好的图,Dijkstra实际上可能表现得相当好。另一方面,通过仔细的参数化,A*总是表现得一样好,甚至更好。您是否已经尝试过它对数据的处理方式?

也就是说,我也很有兴趣听听其他人的经历。当然,像谷歌Map搜索这样的突出例子是特别有趣的。我可以想象类似于有向近邻启发式的东西。

说到GraphHopper, 一个基于OpenStreetMap的快速开源路线规划器,我阅读了一些文献并实现了一些方法。最简单的解决方案是Dijkstra,一个简单的改进是双向Dijkstra,它大致只探索一半的节点。在双向Dijkstra模式下,穿越整个德国需要1秒(汽车模式),在C模式中可能只需要0.5秒左右;)

我在这里用双向Dijkstra创建了一个真实路径搜索的动图。还有一些想法可以让Dijkstra更快,比如做A*,这是一个“面向目标的Dijkstra”。我还为它创建了一个gif动画。

但是怎样才能(快得多)呢?

问题是,对于路径搜索来说,必须探索位置之间的所有节点,这是非常昂贵的,因为在德国已经有数百万个节点了。但是Dijkstra等的另一个痛点是这样的搜索使用大量的RAM。

有启发式解决方案,也有精确解决方案,将图(路网)分层组织,两者都有优缺点,主要解决速度和RAM问题。我在这个回答中列出了其中的一些。

对于GraphHopper,我决定使用收缩层次结构,因为它相对“容易”实现,并且不需要花时间来准备图表。它仍然会导致非常快的响应时间,就像你可以在我们的在线实例GraphHopper Maps上测试一样。例如,从南非到中国东部,距离23000公里,汽车行驶时间近14天,在服务器上只需要0.1秒。

我知道OP里的地图是怎么回事了:

用指定的中间点来观察路线:由于那条路不直,这条路线略微向后走。

如果他们的算法不会回溯,它就看不到更短的路线。

我对此有了更多的想法:

1)记住地图代表一个实体组织。存储每个交叉口的经纬度。除了目标方向上的点以外,你不需要检查太多。只有当你发现自己受阻时,你才需要超越这一点。如果你储存了大量的高级连接,你就可以进一步限制它们——通常情况下,你永远不会以偏离最终目的地的方式穿过其中任何一个连接。

2)根据有限的连通性将世界划分为一系列区域,定义区域之间的所有连通性点。找出您的源和目标所在的区域,从您的位置到每个连接点的起始和结束区域路由,以及连接点之间的区域映射。(我怀疑后者在很大程度上是事先计算好的。)

请注意,区域可以比大都市区域小。任何具有地形特征的城市(比如一条河)都是多个区域。