地图提供商(如谷歌或Yahoo!地图)指示方向?

I mean, they probably have real-world data in some form, certainly including distances but also perhaps things like driving speeds, presence of sidewalks, train schedules, etc. But suppose the data were in a simpler format, say a very large directed graph with edge weights reflecting distances. I want to be able to quickly compute directions from one arbitrary point to another. Sometimes these points will be close together (within one city) while sometimes they will be far apart (cross-country).

Graph algorithms like Dijkstra's algorithm will not work because the graph is enormous. Luckily, heuristic algorithms like A* will probably work. However, our data is very structured, and perhaps some kind of tiered approach might work? (For example, store precomputed directions between certain "key" points far apart, as well as some local directions. Then directions for two far-away points will involve local directions to a key points, global directions to another key point, and then local directions again.)

实践中实际使用的算法是什么?

PS:这个问题的动机是发现在线地图方向的怪癖。与三角形不等式相反,有时谷歌Maps认为X-Z比使用中间点(如X-Y-Z)花费的时间更长,距离更远。但也许他们的行走方向也会优化另一个参数?

pp。这是对三角不等式的另一个违反,这表明(对我来说)他们使用了某种分层方法:X-Z vs X-Y-Z。前者似乎使用了著名的塞瓦斯托波尔大道(Boulevard de Sebastopol),尽管它有点偏僻。

编辑:这两个例子似乎都不起作用了,但在最初的帖子发布时都起作用了。


当前回答

I was very curious about the heuristics used, when a while back we got routes from the same starting location near Santa Rosa, to two different campgrounds in Yosemite National Park. These different destinations produced quite different routes (via I-580 or CA-12) despite the fact that both routes converged for the last 100 miles (along CA-120) before diverging again by a few miles at the end. This was quite repeatable. The two routes were up to 50 miles apart for around 100 miles, but the distances/times were pretty close to each other as you would expect.

唉,我无法重现——算法肯定已经改变了。但这让我对算法很好奇。我所能推测的是,有一些方向修剪,恰好对从远处看的目的地之间的微小角度差异非常敏感,或者有不同的最终目的地选择的预先计算的片段。

其他回答

我知道OP里的地图是怎么回事了:

用指定的中间点来观察路线:由于那条路不直,这条路线略微向后走。

如果他们的算法不会回溯,它就看不到更短的路线。

I was very curious about the heuristics used, when a while back we got routes from the same starting location near Santa Rosa, to two different campgrounds in Yosemite National Park. These different destinations produced quite different routes (via I-580 or CA-12) despite the fact that both routes converged for the last 100 miles (along CA-120) before diverging again by a few miles at the end. This was quite repeatable. The two routes were up to 50 miles apart for around 100 miles, but the distances/times were pretty close to each other as you would expect.

唉,我无法重现——算法肯定已经改变了。但这让我对算法很好奇。我所能推测的是,有一些方向修剪,恰好对从远处看的目的地之间的微小角度差异非常敏感,或者有不同的最终目的地选择的预先计算的片段。

像Dijkstra算法这样的图算法将无法工作,因为图是巨大的。

这个论点并不一定成立,因为Dijkstra通常不会查看完整的图,而只是一个非常小的子集(图的互联性越好,这个子集就越小)。

对于行为良好的图,Dijkstra实际上可能表现得相当好。另一方面,通过仔细的参数化,A*总是表现得一样好,甚至更好。您是否已经尝试过它对数据的处理方式?

也就是说,我也很有兴趣听听其他人的经历。当然,像谷歌Map搜索这样的突出例子是特别有趣的。我可以想象类似于有向近邻启发式的东西。

就静态道路网络的查询时间而言,目前最先进的技术是Abraham等人提出的Hub标签算法http://link.springer.com/chapter/10.1007/978-3-642-20662-7_20。最近,微软技术报告http://research.microsoft.com/pubs/207102/MSR-TR-2014-4.pdf发布了一份关于该领域的全面而出色的调查报告。

简短的说法是……

Hub标签算法为静态道路网络提供了最快的查询,但需要大量ram来运行(18 GiB)。

传输节点路由稍慢,不过它只需要大约2 GiB的内存,并且有更快的预处理时间。

收缩层次结构在快速预处理时间、低空间需求(0.4 GiB)和快速查询时间之间提供了一个很好的平衡。

没有一种算法是完全占主导地位的……

彼得·桑德斯的谷歌科技演讲可能会让你感兴趣

https://www.youtube.com/watch?v=-0ErpE8tQbw

还有Andrew Goldberg的演讲

https://www.youtube.com/watch?v=WPrkc78XLhw

压缩层次结构的开源实现可从KIT的Peter Sanders研究小组网站获得。http://algo2.iti.kit.edu/english/routeplanning.php

还有一篇微软写的关于CRP算法用法的博客文章…http://blogs.bing.com/maps/2012/01/05/bing-maps-new-routing-engine/

这个问题在过去几年中一直是一个活跃的研究领域。主要思想是对图进行一次预处理,以加快所有后续查询的速度。有了这些附加信息,行程可以很快计算出来。尽管如此,Dijkstra算法仍然是所有优化的基础。

Arachnid描述了双向搜索和基于层次信息的边缘修剪的用法。这些加速技术工作得很好,但最新的算法在任何方面都优于这些技术。使用目前的算法,在大陆公路网上计算最短路径的时间可大大少于1毫秒。快速实现未修改的Dijkstra算法大约需要10秒。

工程快速路线规划算法概述了该领域的研究进展。有关进一步信息,请参阅那篇论文的参考文献。

已知最快的算法不使用数据中关于道路层次状态的信息,即它是高速公路还是本地道路。相反,他们在预处理步骤中计算自己的层次结构,优化以加快路线规划。这种预计算可以用来精简搜索:在Dijkstra算法中,远离起点和目的地的缓慢道路不需要考虑。好处是非常好的性能和结果的正确性保证。

第一个优化的路线规划算法只处理静态道路网络,这意味着图中的边缘具有固定的成本值。这在实践中是不正确的,因为我们想要考虑交通堵塞或车辆相关限制等动态信息。最新的算法也可以处理这些问题,但仍有问题需要解决,研究还在继续。

如果您需要最短路径距离来计算TSP的解,那么您可能对包含源和目的地之间所有距离的矩阵感兴趣。为此,您可以考虑使用高速公路层次结构计算多对多最短路径。请注意,在过去的两年里,这已经通过更新的方法得到了改进。