地图提供商(如谷歌或Yahoo!地图)指示方向?

I mean, they probably have real-world data in some form, certainly including distances but also perhaps things like driving speeds, presence of sidewalks, train schedules, etc. But suppose the data were in a simpler format, say a very large directed graph with edge weights reflecting distances. I want to be able to quickly compute directions from one arbitrary point to another. Sometimes these points will be close together (within one city) while sometimes they will be far apart (cross-country).

Graph algorithms like Dijkstra's algorithm will not work because the graph is enormous. Luckily, heuristic algorithms like A* will probably work. However, our data is very structured, and perhaps some kind of tiered approach might work? (For example, store precomputed directions between certain "key" points far apart, as well as some local directions. Then directions for two far-away points will involve local directions to a key points, global directions to another key point, and then local directions again.)

实践中实际使用的算法是什么?

PS:这个问题的动机是发现在线地图方向的怪癖。与三角形不等式相反,有时谷歌Maps认为X-Z比使用中间点(如X-Y-Z)花费的时间更长,距离更远。但也许他们的行走方向也会优化另一个参数?

pp。这是对三角不等式的另一个违反,这表明(对我来说)他们使用了某种分层方法:X-Z vs X-Y-Z。前者似乎使用了著名的塞瓦斯托波尔大道(Boulevard de Sebastopol),尽管它有点偏僻。

编辑:这两个例子似乎都不起作用了,但在最初的帖子发布时都起作用了。


当前回答

像Dijkstra算法这样的图算法将无法工作,因为图是巨大的。

这个论点并不一定成立,因为Dijkstra通常不会查看完整的图,而只是一个非常小的子集(图的互联性越好,这个子集就越小)。

对于行为良好的图,Dijkstra实际上可能表现得相当好。另一方面,通过仔细的参数化,A*总是表现得一样好,甚至更好。您是否已经尝试过它对数据的处理方式?

也就是说,我也很有兴趣听听其他人的经历。当然,像谷歌Map搜索这样的突出例子是特别有趣的。我可以想象类似于有向近邻启发式的东西。

其他回答

只是解决三角形不等式的违反,希望他们优化的额外因素是常识。你不一定想要最短或最快的路线,因为这可能会导致混乱和破坏。如果你想让自己的路线更适合卡车行驶,并且能够应对每个卫星导航跟踪司机都沿着这些路线行驶的情况,那么你很快就可以放弃三角形不等式[1]。

如果Y是X和Z之间的一条狭窄的住宅街道,那么您可能只想在用户明确要求X-Y-Z时使用通过Y的快捷方式。如果他们要求X-Z,他们应该坚持走主干道,即使它有点远,需要更长的时间。这类似于Braess悖论——如果每个人都试图选择最短、最快的路线,那么随之而来的拥堵意味着这条路线不再是任何人最快的路线。从这里开始,我们将从图论转向博弈论。

事实上,当你允许单向道路并失去对称性要求时,任何产生的距离将是数学意义上的距离函数的希望都将破灭。失去三角不等式也只是在伤口上撒盐。

这纯粹是我的猜测,但我认为他们可能会使用覆盖有向图的影响图数据结构,以缩小搜索域。这将允许搜索算法在所需行程较长时将路径导向主要路线。

鉴于这是一个谷歌应用程序,我们也可以合理地假设,许多神奇的功能都是通过大量缓存完成的。如果缓存前5%最常见的谷歌地图路由请求,我不会感到惊讶(20%?50%?)的请求需要通过简单的查询来回答。

以下是世界上最快的路由算法的比较和正确性:

http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf

下面是谷歌关于这个主题的技术演讲:

http://www.youtube.com/watch?v=-0ErpE8tQbw

以下是schultes所讨论的高速公路层次算法的实现(目前仅在柏林,我正在编写界面,移动版本也正在开发中):

http://tom.mapsforge.org/

作为一个在地图公司工作了18个月的人,其中包括研究路由算法……是的,Dijkstra的方法确实有效,只是做了一些修改:

Instead of doing Dijkstra's once from source to dest, you start at each end, and expand both sides until they meet in the middle. This eliminates roughly half the work (2*pi*(r/2)^2 vs pi*r^2). To avoid exploring the back-alleys of every city between your source and destination, you can have several layers of map data: A 'highways' layer that contains only highways, a 'secondary' layer that contains only secondary streets, and so forth. Then, you explore only smaller sections of the more detailed layers, expanding as necessary. Obviously this description leaves out a lot of detail, but you get the idea.

通过沿着这些路线进行修改,您甚至可以在非常合理的时间范围内完成跨国家路由。

这个问题在过去几年中一直是一个活跃的研究领域。主要思想是对图进行一次预处理,以加快所有后续查询的速度。有了这些附加信息,行程可以很快计算出来。尽管如此,Dijkstra算法仍然是所有优化的基础。

Arachnid描述了双向搜索和基于层次信息的边缘修剪的用法。这些加速技术工作得很好,但最新的算法在任何方面都优于这些技术。使用目前的算法,在大陆公路网上计算最短路径的时间可大大少于1毫秒。快速实现未修改的Dijkstra算法大约需要10秒。

工程快速路线规划算法概述了该领域的研究进展。有关进一步信息,请参阅那篇论文的参考文献。

已知最快的算法不使用数据中关于道路层次状态的信息,即它是高速公路还是本地道路。相反,他们在预处理步骤中计算自己的层次结构,优化以加快路线规划。这种预计算可以用来精简搜索:在Dijkstra算法中,远离起点和目的地的缓慢道路不需要考虑。好处是非常好的性能和结果的正确性保证。

第一个优化的路线规划算法只处理静态道路网络,这意味着图中的边缘具有固定的成本值。这在实践中是不正确的,因为我们想要考虑交通堵塞或车辆相关限制等动态信息。最新的算法也可以处理这些问题,但仍有问题需要解决,研究还在继续。

如果您需要最短路径距离来计算TSP的解,那么您可能对包含源和目的地之间所有距离的矩阵感兴趣。为此,您可以考虑使用高速公路层次结构计算多对多最短路径。请注意,在过去的两年里,这已经通过更新的方法得到了改进。