地图提供商(如谷歌或Yahoo!地图)指示方向?
I mean, they probably have real-world data in some form, certainly including distances but also perhaps things like driving speeds, presence of sidewalks, train schedules, etc. But suppose the data were in a simpler format, say a very large directed graph with edge weights reflecting distances. I want to be able to quickly compute directions from one arbitrary point to another. Sometimes these points will be close together (within one city) while sometimes they will be far apart (cross-country).
Graph algorithms like Dijkstra's algorithm will not work because the graph is enormous. Luckily, heuristic algorithms like A* will probably work. However, our data is very structured, and perhaps some kind of tiered approach might work? (For example, store precomputed directions between certain "key" points far apart, as well as some local directions. Then directions for two far-away points will involve local directions to a key points, global directions to another key point, and then local directions again.)
实践中实际使用的算法是什么?
PS:这个问题的动机是发现在线地图方向的怪癖。与三角形不等式相反,有时谷歌Maps认为X-Z比使用中间点(如X-Y-Z)花费的时间更长,距离更远。但也许他们的行走方向也会优化另一个参数?
pp。这是对三角不等式的另一个违反,这表明(对我来说)他们使用了某种分层方法:X-Z vs X-Y-Z。前者似乎使用了著名的塞瓦斯托波尔大道(Boulevard de Sebastopol),尽管它有点偏僻。
编辑:这两个例子似乎都不起作用了,但在最初的帖子发布时都起作用了。
说到GraphHopper,
一个基于OpenStreetMap的快速开源路线规划器,我阅读了一些文献并实现了一些方法。最简单的解决方案是Dijkstra,一个简单的改进是双向Dijkstra,它大致只探索一半的节点。在双向Dijkstra模式下,穿越整个德国需要1秒(汽车模式),在C模式中可能只需要0.5秒左右;)
我在这里用双向Dijkstra创建了一个真实路径搜索的动图。还有一些想法可以让Dijkstra更快,比如做A*,这是一个“面向目标的Dijkstra”。我还为它创建了一个gif动画。
但是怎样才能(快得多)呢?
问题是,对于路径搜索来说,必须探索位置之间的所有节点,这是非常昂贵的,因为在德国已经有数百万个节点了。但是Dijkstra等的另一个痛点是这样的搜索使用大量的RAM。
有启发式解决方案,也有精确解决方案,将图(路网)分层组织,两者都有优缺点,主要解决速度和RAM问题。我在这个回答中列出了其中的一些。
对于GraphHopper,我决定使用收缩层次结构,因为它相对“容易”实现,并且不需要花时间来准备图表。它仍然会导致非常快的响应时间,就像你可以在我们的在线实例GraphHopper Maps上测试一样。例如,从南非到中国东部,距离23000公里,汽车行驶时间近14天,在服务器上只需要0.1秒。
就静态道路网络的查询时间而言,目前最先进的技术是Abraham等人提出的Hub标签算法http://link.springer.com/chapter/10.1007/978-3-642-20662-7_20。最近,微软技术报告http://research.microsoft.com/pubs/207102/MSR-TR-2014-4.pdf发布了一份关于该领域的全面而出色的调查报告。
简短的说法是……
Hub标签算法为静态道路网络提供了最快的查询,但需要大量ram来运行(18 GiB)。
传输节点路由稍慢,不过它只需要大约2 GiB的内存,并且有更快的预处理时间。
收缩层次结构在快速预处理时间、低空间需求(0.4 GiB)和快速查询时间之间提供了一个很好的平衡。
没有一种算法是完全占主导地位的……
彼得·桑德斯的谷歌科技演讲可能会让你感兴趣
https://www.youtube.com/watch?v=-0ErpE8tQbw
还有Andrew Goldberg的演讲
https://www.youtube.com/watch?v=WPrkc78XLhw
压缩层次结构的开源实现可从KIT的Peter Sanders研究小组网站获得。http://algo2.iti.kit.edu/english/routeplanning.php
还有一篇微软写的关于CRP算法用法的博客文章…http://blogs.bing.com/maps/2012/01/05/bing-maps-new-routing-engine/
这个问题在过去几年中一直是一个活跃的研究领域。主要思想是对图进行一次预处理,以加快所有后续查询的速度。有了这些附加信息,行程可以很快计算出来。尽管如此,Dijkstra算法仍然是所有优化的基础。
Arachnid描述了双向搜索和基于层次信息的边缘修剪的用法。这些加速技术工作得很好,但最新的算法在任何方面都优于这些技术。使用目前的算法,在大陆公路网上计算最短路径的时间可大大少于1毫秒。快速实现未修改的Dijkstra算法大约需要10秒。
工程快速路线规划算法概述了该领域的研究进展。有关进一步信息,请参阅那篇论文的参考文献。
已知最快的算法不使用数据中关于道路层次状态的信息,即它是高速公路还是本地道路。相反,他们在预处理步骤中计算自己的层次结构,优化以加快路线规划。这种预计算可以用来精简搜索:在Dijkstra算法中,远离起点和目的地的缓慢道路不需要考虑。好处是非常好的性能和结果的正确性保证。
第一个优化的路线规划算法只处理静态道路网络,这意味着图中的边缘具有固定的成本值。这在实践中是不正确的,因为我们想要考虑交通堵塞或车辆相关限制等动态信息。最新的算法也可以处理这些问题,但仍有问题需要解决,研究还在继续。
如果您需要最短路径距离来计算TSP的解,那么您可能对包含源和目的地之间所有距离的矩阵感兴趣。为此,您可以考虑使用高速公路层次结构计算多对多最短路径。请注意,在过去的两年里,这已经通过更新的方法得到了改进。