地图提供商(如谷歌或Yahoo!地图)指示方向?

I mean, they probably have real-world data in some form, certainly including distances but also perhaps things like driving speeds, presence of sidewalks, train schedules, etc. But suppose the data were in a simpler format, say a very large directed graph with edge weights reflecting distances. I want to be able to quickly compute directions from one arbitrary point to another. Sometimes these points will be close together (within one city) while sometimes they will be far apart (cross-country).

Graph algorithms like Dijkstra's algorithm will not work because the graph is enormous. Luckily, heuristic algorithms like A* will probably work. However, our data is very structured, and perhaps some kind of tiered approach might work? (For example, store precomputed directions between certain "key" points far apart, as well as some local directions. Then directions for two far-away points will involve local directions to a key points, global directions to another key point, and then local directions again.)

实践中实际使用的算法是什么?

PS:这个问题的动机是发现在线地图方向的怪癖。与三角形不等式相反,有时谷歌Maps认为X-Z比使用中间点(如X-Y-Z)花费的时间更长,距离更远。但也许他们的行走方向也会优化另一个参数?

pp。这是对三角不等式的另一个违反,这表明(对我来说)他们使用了某种分层方法:X-Z vs X-Y-Z。前者似乎使用了著名的塞瓦斯托波尔大道(Boulevard de Sebastopol),尽管它有点偏僻。

编辑:这两个例子似乎都不起作用了,但在最初的帖子发布时都起作用了。


当前回答

这纯粹是我的猜测,但我认为他们可能会使用覆盖有向图的影响图数据结构,以缩小搜索域。这将允许搜索算法在所需行程较长时将路径导向主要路线。

鉴于这是一个谷歌应用程序,我们也可以合理地假设,许多神奇的功能都是通过大量缓存完成的。如果缓存前5%最常见的谷歌地图路由请求,我不会感到惊讶(20%?50%?)的请求需要通过简单的查询来回答。

其他回答

像Dijkstra算法这样的图算法将无法工作,因为图是巨大的。

这个论点并不一定成立,因为Dijkstra通常不会查看完整的图,而只是一个非常小的子集(图的互联性越好,这个子集就越小)。

对于行为良好的图,Dijkstra实际上可能表现得相当好。另一方面,通过仔细的参数化,A*总是表现得一样好,甚至更好。您是否已经尝试过它对数据的处理方式?

也就是说,我也很有兴趣听听其他人的经历。当然,像谷歌Map搜索这样的突出例子是特别有趣的。我可以想象类似于有向近邻启发式的东西。

只是解决三角形不等式的违反,希望他们优化的额外因素是常识。你不一定想要最短或最快的路线,因为这可能会导致混乱和破坏。如果你想让自己的路线更适合卡车行驶,并且能够应对每个卫星导航跟踪司机都沿着这些路线行驶的情况,那么你很快就可以放弃三角形不等式[1]。

如果Y是X和Z之间的一条狭窄的住宅街道,那么您可能只想在用户明确要求X-Y-Z时使用通过Y的快捷方式。如果他们要求X-Z,他们应该坚持走主干道,即使它有点远,需要更长的时间。这类似于Braess悖论——如果每个人都试图选择最短、最快的路线,那么随之而来的拥堵意味着这条路线不再是任何人最快的路线。从这里开始,我们将从图论转向博弈论。

事实上,当你允许单向道路并失去对称性要求时,任何产生的距离将是数学意义上的距离函数的希望都将破灭。失去三角不等式也只是在伤口上撒盐。

地图从不考虑整个地图。 我猜是:- 1. 根据你的位置,它们加载一个地方和那个地方的地标。 2. 当你搜索目的地时,他们会加载地图的另一部分,然后用两个地方做一个图,然后应用最短路径算法。

此外,还有一个重要的技术动态规划,我怀疑是用在最短路径的计算。你也可以参考一下。

Probably similar to the answer on pre-computed routes between major locations and layered maps, but my understanding is that in games, to speed up A*, you have a map that is very coarse for macro navigation, and a fine-grained map for navigation to the boundary of macro directions. So you have 2 small paths to calculate, and hence your search space is much much smaller than simply doing a single path to the destination. And if you're in the business of doing this a lot, you'd have a lot of that data pre-computed so at least part of the search is a search for pre-computed data, rather than a search for a path.

I was very curious about the heuristics used, when a while back we got routes from the same starting location near Santa Rosa, to two different campgrounds in Yosemite National Park. These different destinations produced quite different routes (via I-580 or CA-12) despite the fact that both routes converged for the last 100 miles (along CA-120) before diverging again by a few miles at the end. This was quite repeatable. The two routes were up to 50 miles apart for around 100 miles, but the distances/times were pretty close to each other as you would expect.

唉,我无法重现——算法肯定已经改变了。但这让我对算法很好奇。我所能推测的是,有一些方向修剪,恰好对从远处看的目的地之间的微小角度差异非常敏感,或者有不同的最终目的地选择的预先计算的片段。