应用程序开发人员常见的数据库开发错误有哪些?
当前回答
这之前已经说过了,但是:索引,索引,还是索引。我见过许多性能不佳的企业web应用程序,它们通过简单地进行一些分析(查看哪些表被频繁访问),然后在这些表上添加索引来解决问题。这甚至不需要太多的SQL编写知识,而且回报是巨大的。
Avoid data duplication like the plague. Some people advocate that a little duplication won't hurt, and will improve performance. Hey, I'm not saying that you have to torture your schema into Third Normal Form, until it's so abstract that not even the DBA's know what's going on. Just understand that whenever you duplicate a set of names, or zipcodes, or shipping codes, the copies WILL fall out of synch with each other eventually. It WILL happen. And then you'll be kicking yourself as you run the weekly maintenance script.
最后:使用清晰、一致、直观的命名约定。与一段编写良好的代码应该是可读的一样,一个好的SQL模式或查询应该是可读的,并且实际上告诉您它在做什么,甚至没有注释。六个月后,当你不得不对桌子进行维护时,你会感谢自己的。“选择account_number, billing_date FROM national_accounts”比“选择ACCNTNBR, BILLDAT FROM NTNLACCTS”更容易使用。
其他回答
开发人员所犯的关键数据库设计和编程错误
Selfish database design and usage. Developers often treat the database as their personal persistent object store without considering the needs of other stakeholders in the data. This also applies to application architects. Poor database design and data integrity makes it hard for third parties working with the data and can substantially increase the system's life cycle costs. Reporting and MIS tends to be a poor cousin in application design and only done as an afterthought. Abusing denormalised data. Overdoing denormalised data and trying to maintain it within the application is a recipe for data integrity issues. Use denormalisation sparingly. Not wanting to add a join to a query is not an excuse for denormalising. Scared of writing SQL. SQL isn't rocket science and is actually quite good at doing its job. O/R mapping layers are quite good at doing the 95% of queries that are simple and fit well into that model. Sometimes SQL is the best way to do the job. Dogmatic 'No Stored Procedures' policies. Regardless of whether you believe stored procedures are evil, this sort of dogmatic attitude has no place on a software project. Not understanding database design. Normalisation is your friend and it's not rocket science. Joining and cardinality are fairly simple concepts - if you're involved in database application development there's really no excuse for not understanding them.
不使用索引。
忘记在表之间建立关系。我记得当我刚开始在我现在的雇主工作时,我不得不清理这些东西。
使用ORM进行批量更新 选择多于需要的数据。同样,这通常在使用ORM时完成 在循环中触发sql。 没有良好的测试数据,只在实时数据上注意到性能下降。
使用Excel存储(大量)数据。
我曾见过一些公司拥有数千行并使用多个工作表(由于以前版本的Excel的行数限制为65535)。
Excel非常适合用于报告、数据演示和其他任务,但不应被视为数据库。
推荐文章
- 使用{merge: true}设置的Firestore与更新之间的差异
- mysql_connect():[2002]没有这样的文件或目录(试图通过unix:///tmp/mysql.sock连接)在
- 使用电子邮件地址为主键?
- MongoDB在v4之前不兼容ACID意味着什么?
- 第一次设计数据库:我是否过度设计了?
- 我应该在SQL varchar(长度)中考虑电话的最长的全球电话号码是什么
- MySQL查询转储
- phpMyAdmin错误>格式参数错误?
- 在PostgreSQL表已经创建后,我可以添加UNIQUE约束吗?
- 如何在MVC应用程序中缓存数据
- 在Laravel安全地移除迁移
- 使用MySQL Workbench创建一个新数据库
- GUID / UUID数据库键的优缺点
- “防止保存需要重新创建表的更改”的负面影响
- 在一个非常大的表中计算准确行数的最快方法?