代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
下面是功能优等递归解决方案,它是迄今为止最纯粹的一个(并且可以用于任何位长度!):
template<typename T>
int popcnt(T n)
{
if (n>0)
return n&1 + popcnt(n>>1);
return 0;
}
其他回答
我认为最快的方法——不使用查找表和popcount——是以下方法。它仅通过12次操作来计数设置位。
int popcount(int v) {
v = v - ((v >> 1) & 0x55555555); // put count of each 2 bits into those 2 bits
v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // put count of each 4 bits into those 4 bits
return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
}
它之所以有效,是因为你可以通过将设置位分为两半来计算总设置位的数量,计算两半设置位的数量,然后将它们相加。也被称为分而治之范式。让我们来详细谈谈。
v = v - ((v >> 1) & 0x55555555);
两位位数可以是0b00、0b01或0b10。让我们试着在2位上解决这个问题。
---------------------------------------------
| v | (v >> 1) & 0b0101 | v - x |
---------------------------------------------
0b00 0b00 0b00
0b01 0b00 0b01
0b10 0b01 0b01
0b11 0b01 0b10
这就是所需要的:最后一列显示每两个位对中设置位的计数。如果两个比特数>= 2 (0b10),则产生0b01,否则产生0b00。
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
这句话应该很容易理解。在第一个操作之后,我们每两个比特中就有一个set位的计数,现在我们每4个比特中就有一个set位的计数。
v & 0b00110011 //masks out even two bits
(v >> 2) & 0b00110011 // masks out odd two bits
然后我们把上面的结果加起来,得到4位的集合位总数。最后一个陈述是最棘手的。
c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
让我们进一步分析一下……
v + (v >> 4)
这和第二种说法很相似;我们以4为一组来计数集合位。因为我们之前的运算,我们知道每一个咬痕都有一个集合位的计数。让我们看一个例子。假设我们有字节0b01000010。这意味着第一个啃食有它的4位设置,第二个有它的2位设置。现在我们把这些小块加在一起。
v = 0b01000010
(v >> 4) = 0b00000100
v + (v >> 4) = 0b01000010 + 0b00000100
它为我们提供了一个字节中set位的计数,在第二个nibble 0b01000110中,因此我们掩码了该数字中所有字节的前四个字节(丢弃它们)。
0b01000110 & 0x0F = 0b00000110
现在每个字节都有一个集合位的计数。我们需要把它们全部加起来。诀窍是将结果乘以0b10101010,它有一个有趣的属性。如果我们的数字有四个字节,A B C D,它将产生一个新的数字,包含这些字节A+B+C+D B+C+D C+D。一个4字节的数字最多可以设置32位,可以表示为0b00100000。
我们现在需要的是第一个字节,它是所有字节中所有set位的和,我们通过>> 24得到它。该算法是为32位字设计的,但可以很容易地修改为64位字。
Python的解决方案:
def hammingWeight(n: int) -> int:
sums = 0
while (n!=0):
sums+=1
n = n &(n-1)
return sums
在二进制表示中,n中最不有效的1位总是对应n - 1中的0位。因此,对n和n - 1这两个数进行and运算总是将n中最不有效的1位翻转为0,并保持所有其他位相同。
你可以:
while(n){
n = n & (n-1);
count++;
}
这背后的逻辑是n-1位从n的最右边的集合位倒出来。
如果n=6,即110,那么5是101,位从n的最右边的集合位倒出来。
因此,如果我们&这两个,我们将在每次迭代中使最右边的位为0,并且总是到下一个最右边的集位。因此,计数设置位。当每一位都被设置时,最糟糕的时间复杂度将是O(log n)。
这里有一个到目前为止还没有提到的解决方案,使用位字段。下面的程序使用4种不同的方法对100000000个16位整数数组中的设置位进行计数。计时结果在括号中给出(在MacOSX上,使用gcc -O3):
#include <stdio.h>
#include <stdlib.h>
#define LENGTH 100000000
typedef struct {
unsigned char bit0 : 1;
unsigned char bit1 : 1;
unsigned char bit2 : 1;
unsigned char bit3 : 1;
unsigned char bit4 : 1;
unsigned char bit5 : 1;
unsigned char bit6 : 1;
unsigned char bit7 : 1;
} bits;
unsigned char sum_bits(const unsigned char x) {
const bits *b = (const bits*) &x;
return b->bit0 + b->bit1 + b->bit2 + b->bit3 \
+ b->bit4 + b->bit5 + b->bit6 + b->bit7;
}
int NumberOfSetBits(int i) {
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
#define out(s) \
printf("bits set: %lu\nbits counted: %lu\n", 8*LENGTH*sizeof(short)*3/4, s);
int main(int argc, char **argv) {
unsigned long i, s;
unsigned short *x = malloc(LENGTH*sizeof(short));
unsigned char lut[65536], *p;
unsigned short *ps;
int *pi;
/* set 3/4 of the bits */
for (i=0; i<LENGTH; ++i)
x[i] = 0xFFF0;
/* sum_bits (1.772s) */
for (i=LENGTH*sizeof(short), p=(unsigned char*) x, s=0; i--; s+=sum_bits(*p++));
out(s);
/* NumberOfSetBits (0.404s) */
for (i=LENGTH*sizeof(short)/sizeof(int), pi=(int*)x, s=0; i--; s+=NumberOfSetBits(*pi++));
out(s);
/* populate lookup table */
for (i=0, p=(unsigned char*) &i; i<sizeof(lut); ++i)
lut[i] = sum_bits(p[0]) + sum_bits(p[1]);
/* 256-bytes lookup table (0.317s) */
for (i=LENGTH*sizeof(short), p=(unsigned char*) x, s=0; i--; s+=lut[*p++]);
out(s);
/* 65536-bytes lookup table (0.250s) */
for (i=LENGTH, ps=x, s=0; i--; s+=lut[*ps++]);
out(s);
free(x);
return 0;
}
虽然位域版本非常可读,但计时结果显示它比NumberOfSetBits()慢了4倍以上。基于查找表的实现仍然要快得多,特别是对于一个65 kB的表。
int bitcount(unsigned int n)
{
int count=0;
while(n)
{
count += n & 0x1u;
n >>= 1;
}
return count;
}
迭代的“计数”运行的时间与总比特数成比例。它只是循环遍历所有位,因为while条件而稍微提前终止。如果1'S或集合位是稀疏的且在最低有效位之间,则很有用。