代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

我在任何地方都没见过这种方法:

int nbits(unsigned char v) {
    return ((((v - ((v >> 1) & 0x55)) * 0x1010101) & 0x30c00c03) * 0x10040041) >> 0x1c;
}

它每字节工作一次,所以对于一个32位整数,它必须被调用四次。它源于横向加法,但它使用两个32位乘法将指令数量减少到只有7条。

大多数当前的C编译器将使用SIMD (SSE2)指令优化这个函数,当请求的数量是4的倍数时,它变得非常有竞争力。它是可移植的,可以定义为宏或内联函数,并且不需要数据表。

这种方法可以扩展为一次处理16位,使用64位乘法。但是,当所有16位都被设置时,它会失败,返回0,所以它只能在0xFFFF输入值不存在时使用。由于64位操作,它也比较慢,并且没有很好地优化。

其他回答

当你写出比特模式时,“黑客的喜悦”比特旋转变得更加清晰。

unsigned int bitCount(unsigned int x)
{
  x = ((x >> 1) & 0b01010101010101010101010101010101)
     + (x       & 0b01010101010101010101010101010101);
  x = ((x >> 2) & 0b00110011001100110011001100110011)
     + (x       & 0b00110011001100110011001100110011); 
  x = ((x >> 4) & 0b00001111000011110000111100001111)
     + (x       & 0b00001111000011110000111100001111); 
  x = ((x >> 8) & 0b00000000111111110000000011111111)
     + (x       & 0b00000000111111110000000011111111); 
  x = ((x >> 16)& 0b00000000000000001111111111111111)
     + (x       & 0b00000000000000001111111111111111); 
  return x;
}

第一步将偶数位加到奇数位上,产生每两个位的和。其他步骤将高阶数据块添加到低阶数据块,将数据块的大小一直增加一倍,直到最终计数占用整个int。

在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。

unsigned int bitCount (unsigned int value) {
    unsigned int count = 0;
    while (value > 0) {           // until all bits are zero
        if ((value & 1) == 1)     // check lower bit
            count++;
        value >>= 1;              // shift bits, removing lower bit
    }
    return count;
}

如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:

// Lookup table for fast calculation of bits set in 8-bit unsigned char.

static unsigned char oneBitsInUChar[] = {
//  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F (<- n)
//  =====================================================
    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
    : : :
    4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};

// Function for fast calculation of bits set in 16-bit unsigned short.

unsigned char oneBitsInUShort (unsigned short x) {
    return oneBitsInUChar [x >>    8]
         + oneBitsInUChar [x &  0xff];
}

// Function for fast calculation of bits set in 32-bit unsigned int.

unsigned char oneBitsInUInt (unsigned int x) {
    return oneBitsInUShort (x >>     16)
         + oneBitsInUShort (x &  0xffff);
}

这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。

这不是最快或最好的解决方案,但我以自己的方式发现了同样的问题,我开始反复思考。最后我意识到它可以这样做,如果你从数学方面得到这个问题,画一个图,然后你发现它是一个有周期部分的函数,然后你意识到周期之间的差异……所以你看:

unsigned int f(unsigned int x)
{
    switch (x) {
        case 0:
            return 0;
        case 1:
            return 1;
        case 2:
            return 1;
        case 3:
            return 2;
        default:
            return f(x/4) + f(x%4);
    }
}

这是一个可移植的模块(ANSI-C),它可以在任何架构上对每个算法进行基准测试。

你的CPU有9位字节?目前它实现了2个算法,K&R算法和一个字节查找表。查找表的平均速度比K&R算法快3倍。如果有人能想出办法使“黑客的喜悦”算法可移植,请随意添加它。

#ifndef _BITCOUNT_H_
#define _BITCOUNT_H_

/* Return the Hamming Wieght of val, i.e. the number of 'on' bits. */
int bitcount( unsigned int );

/* List of available bitcount algorithms.  
 * onTheFly:    Calculate the bitcount on demand.
 *
 * lookupTalbe: Uses a small lookup table to determine the bitcount.  This
 * method is on average 3 times as fast as onTheFly, but incurs a small
 * upfront cost to initialize the lookup table on the first call.
 *
 * strategyCount is just a placeholder. 
 */
enum strategy { onTheFly, lookupTable, strategyCount };

/* String represenations of the algorithm names */
extern const char *strategyNames[];

/* Choose which bitcount algorithm to use. */
void setStrategy( enum strategy );

#endif

.

#include <limits.h>

#include "bitcount.h"

/* The number of entries needed in the table is equal to the number of unique
 * values a char can represent which is always UCHAR_MAX + 1*/
static unsigned char _bitCountTable[UCHAR_MAX + 1];
static unsigned int _lookupTableInitialized = 0;

static int _defaultBitCount( unsigned int val ) {
    int count;

    /* Starting with:
     * 1100 - 1 == 1011,  1100 & 1011 == 1000
     * 1000 - 1 == 0111,  1000 & 0111 == 0000
     */
    for ( count = 0; val; ++count )
        val &= val - 1;

    return count;
}

/* Looks up each byte of the integer in a lookup table.
 *
 * The first time the function is called it initializes the lookup table.
 */
static int _tableBitCount( unsigned int val ) {
    int bCount = 0;

    if ( !_lookupTableInitialized ) {
        unsigned int i;
        for ( i = 0; i != UCHAR_MAX + 1; ++i )
            _bitCountTable[i] =
                ( unsigned char )_defaultBitCount( i );

        _lookupTableInitialized = 1;
    }

    for ( ; val; val >>= CHAR_BIT )
        bCount += _bitCountTable[val & UCHAR_MAX];

    return bCount;
}

static int ( *_bitcount ) ( unsigned int ) = _defaultBitCount;

const char *strategyNames[] = { "onTheFly", "lookupTable" };

void setStrategy( enum strategy s ) {
    switch ( s ) {
    case onTheFly:
        _bitcount = _defaultBitCount;
        break;
    case lookupTable:
        _bitcount = _tableBitCount;
        break;
    case strategyCount:
        break;
    }
}

/* Just a forwarding function which will call whichever version of the
 * algorithm has been selected by the client 
 */
int bitcount( unsigned int val ) {
    return _bitcount( val );
}

#ifdef _BITCOUNT_EXE_

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

/* Use the same sequence of pseudo random numbers to benmark each Hamming
 * Weight algorithm.
 */
void benchmark( int reps ) {
    clock_t start, stop;
    int i, j;
    static const int iterations = 1000000;

    for ( j = 0; j != strategyCount; ++j ) {
        setStrategy( j );

        srand( 257 );

        start = clock(  );

        for ( i = 0; i != reps * iterations; ++i )
            bitcount( rand(  ) );

        stop = clock(  );

        printf
            ( "\n\t%d psudoe-random integers using %s: %f seconds\n\n",
              reps * iterations, strategyNames[j],
              ( double )( stop - start ) / CLOCKS_PER_SEC );
    }
}

int main( void ) {
    int option;

    while ( 1 ) {
        printf( "Menu Options\n"
            "\t1.\tPrint the Hamming Weight of an Integer\n"
            "\t2.\tBenchmark Hamming Weight implementations\n"
            "\t3.\tExit ( or cntl-d )\n\n\t" );

        if ( scanf( "%d", &option ) == EOF )
            break;

        switch ( option ) {
        case 1:
            printf( "Please enter the integer: " );
            if ( scanf( "%d", &option ) != EOF )
                printf
                    ( "The Hamming Weight of %d ( 0x%X ) is %d\n\n",
                      option, option, bitcount( option ) );
            break;
        case 2:
            printf
                ( "Please select number of reps ( in millions ): " );
            if ( scanf( "%d", &option ) != EOF )
                benchmark( option );
            break;
        case 3:
            goto EXIT;
            break;
        default:
            printf( "Invalid option\n" );
        }

    }

 EXIT:
    printf( "\n" );

    return 0;
}

#endif

我使用下面的函数。我还没有检查基准测试,但它是有效的。

int msb(int num)
{
    int m = 0;
    for (int i = 16; i > 0; i = i>>1)
    {
        // debug(i, num, m);
        if(num>>i)
        {
            m += i;
            num>>=i;
        }
    }
    return m;
}