代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
对于那些想要在c++ 11中为任何无符号整数类型作为consexpr函数的人(tacklelib/include/tacklelib/utility/math.hpp):
#include <stdint.h>
#include <limits>
#include <type_traits>
const constexpr uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
namespace detail
{
template <typename T>
inline constexpr T _count_bits_0(const T & v)
{
return v - ((v >> 1) & 0x55555555);
}
template <typename T>
inline constexpr T _count_bits_1(const T & v)
{
return (v & 0x33333333) + ((v >> 2) & 0x33333333);
}
template <typename T>
inline constexpr T _count_bits_2(const T & v)
{
return (v + (v >> 4)) & 0x0F0F0F0F;
}
template <typename T>
inline constexpr T _count_bits_3(const T & v)
{
return v + (v >> 8);
}
template <typename T>
inline constexpr T _count_bits_4(const T & v)
{
return v + (v >> 16);
}
template <typename T>
inline constexpr T _count_bits_5(const T & v)
{
return v & 0x0000003F;
}
template <typename T, bool greater_than_uint32>
struct _impl
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) + count_bits(v >> 32);
}
};
template <typename T>
struct _impl<T, false>
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return 0;
}
};
}
template <typename T>
inline constexpr T count_bits(const T & v)
{
static_assert(std::is_integral<T>::value, "type T must be an integer");
static_assert(!std::is_signed<T>::value, "type T must be not signed");
return uint32_max >= v ?
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) :
detail::_impl<T, sizeof(uint32_t) < sizeof(v)>::_count_bits_with_shift(v);
}
谷歌测试库中的附加测试:
#include <stdlib.h>
#include <time.h>
namespace {
template <typename T>
inline uint32_t _test_count_bits(const T & v)
{
uint32_t count = 0;
T n = v;
while (n > 0) {
if (n % 2) {
count += 1;
}
n /= 2;
}
return count;
}
}
TEST(FunctionsTest, random_count_bits_uint32_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint32_t r = uint32_t(rand()) + (uint32_t(rand()) << 16);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
TEST(FunctionsTest, random_count_bits_uint64_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint64_t r = uint64_t(rand()) + (uint64_t(rand()) << 16) + (uint64_t(rand()) << 32) + (uint64_t(rand()) << 48);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
其他回答
你可以:
while(n){
n = n & (n-1);
count++;
}
这背后的逻辑是n-1位从n的最右边的集合位倒出来。
如果n=6,即110,那么5是101,位从n的最右边的集合位倒出来。
因此,如果我们&这两个,我们将在每次迭代中使最右边的位为0,并且总是到下一个最右边的集位。因此,计数设置位。当每一位都被设置时,最糟糕的时间复杂度将是O(log n)。
你可以使用内置函数__builtin_popcount()。c++中没有__builtin_popcount,但它是GCC编译器的内置函数。这个函数返回一个整数中的设置位数。
int __builtin_popcount (unsigned int x);
参考:Bit Twiddling Hacks
下面是功能优等递归解决方案,它是迄今为止最纯粹的一个(并且可以用于任何位长度!):
template<typename T>
int popcnt(T n)
{
if (n>0)
return n&1 + popcnt(n>>1);
return 0;
}
我在任何地方都没见过这种方法:
int nbits(unsigned char v) {
return ((((v - ((v >> 1) & 0x55)) * 0x1010101) & 0x30c00c03) * 0x10040041) >> 0x1c;
}
它每字节工作一次,所以对于一个32位整数,它必须被调用四次。它源于横向加法,但它使用两个32位乘法将指令数量减少到只有7条。
大多数当前的C编译器将使用SIMD (SSE2)指令优化这个函数,当请求的数量是4的倍数时,它变得非常有竞争力。它是可移植的,可以定义为宏或内联函数,并且不需要数据表。
这种方法可以扩展为一次处理16位,使用64位乘法。但是,当所有16位都被设置时,它会失败,返回0,所以它只能在0xFFFF输入值不存在时使用。由于64位操作,它也比较慢,并且没有很好地优化。
我给出了两个算法来回答这个问题,
package countSetBitsInAnInteger;
import java.util.Scanner;
public class UsingLoop {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
try {
System.out.println("Enter a integer number to check for set bits in it");
int n = in.nextInt();
System.out.println("Using while loop, we get the number of set bits as: " + usingLoop(n));
System.out.println("Using Brain Kernighan's Algorithm, we get the number of set bits as: " + usingBrainKernighan(n));
System.out.println("Using ");
}
finally {
in.close();
}
}
private static int usingBrainKernighan(int n) {
int count = 0;
while(n > 0) {
n& = (n-1);
count++;
}
return count;
}
/*
Analysis:
Time complexity = O(lgn)
Space complexity = O(1)
*/
private static int usingLoop(int n) {
int count = 0;
for(int i=0; i<32; i++) {
if((n&(1 << i)) != 0)
count++;
}
return count;
}
/*
Analysis:
Time Complexity = O(32) // Maybe the complexity is O(lgn)
Space Complexity = O(1)
*/
}