代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

对于那些想要在c++ 11中为任何无符号整数类型作为consexpr函数的人(tacklelib/include/tacklelib/utility/math.hpp):

#include <stdint.h>
#include <limits>
#include <type_traits>

const constexpr uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();

namespace detail
{
    template <typename T>
    inline constexpr T _count_bits_0(const T & v)
    {
        return v - ((v >> 1) & 0x55555555);
    }

    template <typename T>
    inline constexpr T _count_bits_1(const T & v)
    {
        return (v & 0x33333333) + ((v >> 2) & 0x33333333);
    }

    template <typename T>
    inline constexpr T _count_bits_2(const T & v)
    {
        return (v + (v >> 4)) & 0x0F0F0F0F;
    }

    template <typename T>
    inline constexpr T _count_bits_3(const T & v)
    {
        return v + (v >> 8);
    }

    template <typename T>
    inline constexpr T _count_bits_4(const T & v)
    {
        return v + (v >> 16);
    }

    template <typename T>
    inline constexpr T _count_bits_5(const T & v)
    {
        return v & 0x0000003F;
    }

    template <typename T, bool greater_than_uint32>
    struct _impl
    {
        static inline constexpr T _count_bits_with_shift(const T & v)
        {
            return
                detail::_count_bits_5(
                    detail::_count_bits_4(
                        detail::_count_bits_3(
                            detail::_count_bits_2(
                                detail::_count_bits_1(
                                    detail::_count_bits_0(v)))))) + count_bits(v >> 32);
        }
    };

    template <typename T>
    struct _impl<T, false>
    {
        static inline constexpr T _count_bits_with_shift(const T & v)
        {
            return 0;
        }
    };
}

template <typename T>
inline constexpr T count_bits(const T & v)
{
    static_assert(std::is_integral<T>::value, "type T must be an integer");
    static_assert(!std::is_signed<T>::value, "type T must be not signed");

    return uint32_max >= v ?
        detail::_count_bits_5(
            detail::_count_bits_4(
                detail::_count_bits_3(
                    detail::_count_bits_2(
                        detail::_count_bits_1(
                            detail::_count_bits_0(v)))))) :
        detail::_impl<T, sizeof(uint32_t) < sizeof(v)>::_count_bits_with_shift(v);
}

谷歌测试库中的附加测试:

#include <stdlib.h>
#include <time.h>

namespace {
    template <typename T>
    inline uint32_t _test_count_bits(const T & v)
    {
        uint32_t count = 0;
        T n = v;
        while (n > 0) {
            if (n % 2) {
                count += 1;
            }
            n /= 2;
        }
        return count;
    }
}

TEST(FunctionsTest, random_count_bits_uint32_100K)
{
    srand(uint_t(time(NULL)));
    for (uint32_t i = 0; i < 100000; i++) {
        const uint32_t r = uint32_t(rand()) + (uint32_t(rand()) << 16);
        ASSERT_EQ(_test_count_bits(r), count_bits(r));
    }
}

TEST(FunctionsTest, random_count_bits_uint64_100K)
{
    srand(uint_t(time(NULL)));
    for (uint32_t i = 0; i < 100000; i++) {
        const uint64_t r = uint64_t(rand()) + (uint64_t(rand()) << 16) + (uint64_t(rand()) << 32) + (uint64_t(rand()) << 48);
        ASSERT_EQ(_test_count_bits(r), count_bits(r));
    }
}

其他回答

这是一个可移植的模块(ANSI-C),它可以在任何架构上对每个算法进行基准测试。

你的CPU有9位字节?目前它实现了2个算法,K&R算法和一个字节查找表。查找表的平均速度比K&R算法快3倍。如果有人能想出办法使“黑客的喜悦”算法可移植,请随意添加它。

#ifndef _BITCOUNT_H_
#define _BITCOUNT_H_

/* Return the Hamming Wieght of val, i.e. the number of 'on' bits. */
int bitcount( unsigned int );

/* List of available bitcount algorithms.  
 * onTheFly:    Calculate the bitcount on demand.
 *
 * lookupTalbe: Uses a small lookup table to determine the bitcount.  This
 * method is on average 3 times as fast as onTheFly, but incurs a small
 * upfront cost to initialize the lookup table on the first call.
 *
 * strategyCount is just a placeholder. 
 */
enum strategy { onTheFly, lookupTable, strategyCount };

/* String represenations of the algorithm names */
extern const char *strategyNames[];

/* Choose which bitcount algorithm to use. */
void setStrategy( enum strategy );

#endif

.

#include <limits.h>

#include "bitcount.h"

/* The number of entries needed in the table is equal to the number of unique
 * values a char can represent which is always UCHAR_MAX + 1*/
static unsigned char _bitCountTable[UCHAR_MAX + 1];
static unsigned int _lookupTableInitialized = 0;

static int _defaultBitCount( unsigned int val ) {
    int count;

    /* Starting with:
     * 1100 - 1 == 1011,  1100 & 1011 == 1000
     * 1000 - 1 == 0111,  1000 & 0111 == 0000
     */
    for ( count = 0; val; ++count )
        val &= val - 1;

    return count;
}

/* Looks up each byte of the integer in a lookup table.
 *
 * The first time the function is called it initializes the lookup table.
 */
static int _tableBitCount( unsigned int val ) {
    int bCount = 0;

    if ( !_lookupTableInitialized ) {
        unsigned int i;
        for ( i = 0; i != UCHAR_MAX + 1; ++i )
            _bitCountTable[i] =
                ( unsigned char )_defaultBitCount( i );

        _lookupTableInitialized = 1;
    }

    for ( ; val; val >>= CHAR_BIT )
        bCount += _bitCountTable[val & UCHAR_MAX];

    return bCount;
}

static int ( *_bitcount ) ( unsigned int ) = _defaultBitCount;

const char *strategyNames[] = { "onTheFly", "lookupTable" };

void setStrategy( enum strategy s ) {
    switch ( s ) {
    case onTheFly:
        _bitcount = _defaultBitCount;
        break;
    case lookupTable:
        _bitcount = _tableBitCount;
        break;
    case strategyCount:
        break;
    }
}

/* Just a forwarding function which will call whichever version of the
 * algorithm has been selected by the client 
 */
int bitcount( unsigned int val ) {
    return _bitcount( val );
}

#ifdef _BITCOUNT_EXE_

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

/* Use the same sequence of pseudo random numbers to benmark each Hamming
 * Weight algorithm.
 */
void benchmark( int reps ) {
    clock_t start, stop;
    int i, j;
    static const int iterations = 1000000;

    for ( j = 0; j != strategyCount; ++j ) {
        setStrategy( j );

        srand( 257 );

        start = clock(  );

        for ( i = 0; i != reps * iterations; ++i )
            bitcount( rand(  ) );

        stop = clock(  );

        printf
            ( "\n\t%d psudoe-random integers using %s: %f seconds\n\n",
              reps * iterations, strategyNames[j],
              ( double )( stop - start ) / CLOCKS_PER_SEC );
    }
}

int main( void ) {
    int option;

    while ( 1 ) {
        printf( "Menu Options\n"
            "\t1.\tPrint the Hamming Weight of an Integer\n"
            "\t2.\tBenchmark Hamming Weight implementations\n"
            "\t3.\tExit ( or cntl-d )\n\n\t" );

        if ( scanf( "%d", &option ) == EOF )
            break;

        switch ( option ) {
        case 1:
            printf( "Please enter the integer: " );
            if ( scanf( "%d", &option ) != EOF )
                printf
                    ( "The Hamming Weight of %d ( 0x%X ) is %d\n\n",
                      option, option, bitcount( option ) );
            break;
        case 2:
            printf
                ( "Please select number of reps ( in millions ): " );
            if ( scanf( "%d", &option ) != EOF )
                benchmark( option );
            break;
        case 3:
            goto EXIT;
            break;
        default:
            printf( "Invalid option\n" );
        }

    }

 EXIT:
    printf( "\n" );

    return 0;
}

#endif

对于Java,有一个Java .util. bitset。 https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html

cardinality():返回在BitSet中设置为true的比特数。

BitSet是内存高效的,因为它被存储为Long类型。

// How about the following:
public int CountBits(int value)
{
    int count = 0;
    while (value > 0)
    {
        if (value & 1)
            count++;
        value <<= 1;
    }
    return count;
}

这是在golang中的实现

func CountBitSet(n int) int {


    count := 0
    for n > 0 {
      count += n & 1
      n >>= 1

    }
    return count
}

我使用下面更直观的代码。

int countSetBits(int n) {
    return !n ? 0 : 1 + countSetBits(n & (n-1));
}

逻辑:n & (n-1)重置n的最后一个集合位。

附注:我知道这不是O(1)解,尽管这是一个有趣的解。