代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
对于那些想要在c++ 11中为任何无符号整数类型作为consexpr函数的人(tacklelib/include/tacklelib/utility/math.hpp):
#include <stdint.h>
#include <limits>
#include <type_traits>
const constexpr uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
namespace detail
{
template <typename T>
inline constexpr T _count_bits_0(const T & v)
{
return v - ((v >> 1) & 0x55555555);
}
template <typename T>
inline constexpr T _count_bits_1(const T & v)
{
return (v & 0x33333333) + ((v >> 2) & 0x33333333);
}
template <typename T>
inline constexpr T _count_bits_2(const T & v)
{
return (v + (v >> 4)) & 0x0F0F0F0F;
}
template <typename T>
inline constexpr T _count_bits_3(const T & v)
{
return v + (v >> 8);
}
template <typename T>
inline constexpr T _count_bits_4(const T & v)
{
return v + (v >> 16);
}
template <typename T>
inline constexpr T _count_bits_5(const T & v)
{
return v & 0x0000003F;
}
template <typename T, bool greater_than_uint32>
struct _impl
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) + count_bits(v >> 32);
}
};
template <typename T>
struct _impl<T, false>
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return 0;
}
};
}
template <typename T>
inline constexpr T count_bits(const T & v)
{
static_assert(std::is_integral<T>::value, "type T must be an integer");
static_assert(!std::is_signed<T>::value, "type T must be not signed");
return uint32_max >= v ?
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) :
detail::_impl<T, sizeof(uint32_t) < sizeof(v)>::_count_bits_with_shift(v);
}
谷歌测试库中的附加测试:
#include <stdlib.h>
#include <time.h>
namespace {
template <typename T>
inline uint32_t _test_count_bits(const T & v)
{
uint32_t count = 0;
T n = v;
while (n > 0) {
if (n % 2) {
count += 1;
}
n /= 2;
}
return count;
}
}
TEST(FunctionsTest, random_count_bits_uint32_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint32_t r = uint32_t(rand()) + (uint32_t(rand()) << 16);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
TEST(FunctionsTest, random_count_bits_uint64_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint64_t r = uint64_t(rand()) + (uint64_t(rand()) << 16) + (uint64_t(rand()) << 32) + (uint64_t(rand()) << 48);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
其他回答
如果您恰好使用Java,则内置方法Integer。bitCount会这样做。
如果你使用c++,另一个选择是使用模板元编程:
// recursive template to sum bits in an int
template <int BITS>
int countBits(int val) {
// return the least significant bit plus the result of calling ourselves with
// .. the shifted value
return (val & 0x1) + countBits<BITS-1>(val >> 1);
}
// template specialisation to terminate the recursion when there's only one bit left
template<>
int countBits<1>(int val) {
return val & 0x1;
}
用法如下:
// to count bits in a byte/char (this returns 8)
countBits<8>( 255 )
// another byte (this returns 7)
countBits<8>( 254 )
// counting bits in a word/short (this returns 1)
countBits<16>( 256 )
当然,你可以进一步扩展这个模板来使用不同的类型(甚至是自动检测位大小),但为了清晰起见,我让它保持简单。
edit:忘了说这很好,因为它应该在任何c++编译器中工作,它基本上只是为你展开循环,如果一个常量值用于比特计数(换句话说,我很确定这是你能找到的最快的通用方法)
这里有一个到目前为止还没有提到的解决方案,使用位字段。下面的程序使用4种不同的方法对100000000个16位整数数组中的设置位进行计数。计时结果在括号中给出(在MacOSX上,使用gcc -O3):
#include <stdio.h>
#include <stdlib.h>
#define LENGTH 100000000
typedef struct {
unsigned char bit0 : 1;
unsigned char bit1 : 1;
unsigned char bit2 : 1;
unsigned char bit3 : 1;
unsigned char bit4 : 1;
unsigned char bit5 : 1;
unsigned char bit6 : 1;
unsigned char bit7 : 1;
} bits;
unsigned char sum_bits(const unsigned char x) {
const bits *b = (const bits*) &x;
return b->bit0 + b->bit1 + b->bit2 + b->bit3 \
+ b->bit4 + b->bit5 + b->bit6 + b->bit7;
}
int NumberOfSetBits(int i) {
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
#define out(s) \
printf("bits set: %lu\nbits counted: %lu\n", 8*LENGTH*sizeof(short)*3/4, s);
int main(int argc, char **argv) {
unsigned long i, s;
unsigned short *x = malloc(LENGTH*sizeof(short));
unsigned char lut[65536], *p;
unsigned short *ps;
int *pi;
/* set 3/4 of the bits */
for (i=0; i<LENGTH; ++i)
x[i] = 0xFFF0;
/* sum_bits (1.772s) */
for (i=LENGTH*sizeof(short), p=(unsigned char*) x, s=0; i--; s+=sum_bits(*p++));
out(s);
/* NumberOfSetBits (0.404s) */
for (i=LENGTH*sizeof(short)/sizeof(int), pi=(int*)x, s=0; i--; s+=NumberOfSetBits(*pi++));
out(s);
/* populate lookup table */
for (i=0, p=(unsigned char*) &i; i<sizeof(lut); ++i)
lut[i] = sum_bits(p[0]) + sum_bits(p[1]);
/* 256-bytes lookup table (0.317s) */
for (i=LENGTH*sizeof(short), p=(unsigned char*) x, s=0; i--; s+=lut[*p++]);
out(s);
/* 65536-bytes lookup table (0.250s) */
for (i=LENGTH, ps=x, s=0; i--; s+=lut[*ps++]);
out(s);
free(x);
return 0;
}
虽然位域版本非常可读,但计时结果显示它比NumberOfSetBits()慢了4倍以上。基于查找表的实现仍然要快得多,特别是对于一个65 kB的表。
大约在1990年,我为RISC机器编写了一个快速比特计数宏。它不使用高级算术(乘法,除法,%),内存提取(太慢),分支(太慢),但它确实假设CPU有一个32位的桶移位器(换句话说,>> 1和>> 32占用相同的周期)。它假定小常数(如6、12、24)加载到寄存器中不需要花费任何代价,或者存储在临时变量中并反复重用。
在这些假设下,在大多数RISC机器上,它在大约16个周期/指令中计算32位。注意,15条指令/周期接近于周期或指令数量的下界,因为似乎至少需要3条指令(掩码、移位、运算符)才能将加数的数量减半,因此log_2(32) = 5,5 x 3 = 15条指令是准下界。
#define BitCount(X,Y) \
Y = X - ((X >> 1) & 033333333333) - ((X >> 2) & 011111111111); \
Y = ((Y + (Y >> 3)) & 030707070707); \
Y = (Y + (Y >> 6)); \
Y = (Y + (Y >> 12) + (Y >> 24)) & 077;
这是第一步也是最复杂的一步:
input output
AB CD Note
00 00 = AB
01 01 = AB
10 01 = AB - (A >> 1) & 0x1
11 10 = AB - (A >> 1) & 0x1
所以如果我取上面的第一列(A),右移1位,然后从AB减去它,我就得到了输出(CD)。扩展到3位类似;如果你愿意,你可以用一个8行布尔表来检查它。
不吉利
下面是示例代码,可能很有用。
private static final int[] bitCountArr = new int[]{0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
private static final int firstByteFF = 255;
public static final int getCountOfSetBits(int value){
int count = 0;
for(int i=0;i<4;i++){
if(value == 0) break;
count += bitCountArr[value & firstByteFF];
value >>>= 8;
}
return count;
}