代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

在Java 8或9中只调用Integer。bitCount。

其他回答

Python的解决方案:

def hammingWeight(n: int) -> int:
    sums = 0
    while (n!=0):
        sums+=1
        n = n &(n-1)

    return sums

在二进制表示中,n中最不有效的1位总是对应n - 1中的0位。因此,对n和n - 1这两个数进行and运算总是将n中最不有效的1位翻转为0,并保持所有其他位相同。

32位还是32位?我只是在阅读了“破解编码面试”第4版练习5.5(第5章:位操作)后,在Java中使用了这种方法。如果最小有效位是1个增量计数,则右移该整数。

public static int bitCount( int n){
    int count = 0;
    for (int i=n; i!=0; i = i >> 1){
        count += i & 1;
    }
    return count;
}

我认为这个比常数0x33333333的解更直观,不管它们有多快。这取决于你对“最佳算法”的定义。

我认为最快的方法——不使用查找表和popcount——是以下方法。它仅通过12次操作来计数设置位。

int popcount(int v) {
    v = v - ((v >> 1) & 0x55555555);                // put count of each 2 bits into those 2 bits
    v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // put count of each 4 bits into those 4 bits  
    return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
}

它之所以有效,是因为你可以通过将设置位分为两半来计算总设置位的数量,计算两半设置位的数量,然后将它们相加。也被称为分而治之范式。让我们来详细谈谈。

v = v - ((v >> 1) & 0x55555555); 

两位位数可以是0b00、0b01或0b10。让我们试着在2位上解决这个问题。

 ---------------------------------------------
 |   v    |   (v >> 1) & 0b0101   |  v - x   |
 ---------------------------------------------
   0b00           0b00               0b00   
   0b01           0b00               0b01     
   0b10           0b01               0b01
   0b11           0b01               0b10

这就是所需要的:最后一列显示每两个位对中设置位的计数。如果两个比特数>= 2 (0b10),则产生0b01,否则产生0b00。

v = (v & 0x33333333) + ((v >> 2) & 0x33333333); 

这句话应该很容易理解。在第一个操作之后,我们每两个比特中就有一个set位的计数,现在我们每4个比特中就有一个set位的计数。

v & 0b00110011         //masks out even two bits
(v >> 2) & 0b00110011  // masks out odd two bits

然后我们把上面的结果加起来,得到4位的集合位总数。最后一个陈述是最棘手的。

c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;

让我们进一步分析一下……

v + (v >> 4)

这和第二种说法很相似;我们以4为一组来计数集合位。因为我们之前的运算,我们知道每一个咬痕都有一个集合位的计数。让我们看一个例子。假设我们有字节0b01000010。这意味着第一个啃食有它的4位设置,第二个有它的2位设置。现在我们把这些小块加在一起。

v = 0b01000010
(v >> 4) = 0b00000100
v + (v >> 4) = 0b01000010 + 0b00000100

它为我们提供了一个字节中set位的计数,在第二个nibble 0b01000110中,因此我们掩码了该数字中所有字节的前四个字节(丢弃它们)。

0b01000110 & 0x0F = 0b00000110

现在每个字节都有一个集合位的计数。我们需要把它们全部加起来。诀窍是将结果乘以0b10101010,它有一个有趣的属性。如果我们的数字有四个字节,A B C D,它将产生一个新的数字,包含这些字节A+B+C+D B+C+D C+D。一个4字节的数字最多可以设置32位,可以表示为0b00100000。

我们现在需要的是第一个字节,它是所有字节中所有set位的和,我们通过>> 24得到它。该算法是为32位字设计的,但可以很容易地修改为64位字。

"最佳算法"是什么意思?短码还是长码?您的代码看起来非常优雅,并且具有恒定的执行时间。代码也很短。

但如果速度是主要因素,而不是代码大小,那么我认为以下方法可以更快:

       static final int[] BIT_COUNT = { 0, 1, 1, ... 256 values with a bitsize of a byte ... };
        static int bitCountOfByte( int value ){
            return BIT_COUNT[ value & 0xFF ];
        }

        static int bitCountOfInt( int value ){
            return bitCountOfByte( value ) 
                 + bitCountOfByte( value >> 8 ) 
                 + bitCountOfByte( value >> 16 ) 
                 + bitCountOfByte( value >> 24 );
        }

我认为这不会更快的64位值,但32位值可以更快。

unsigned int count_bit(unsigned int x)
{
  x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
  x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
  x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
  x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);
  x = (x & 0x0000FFFF) + ((x >> 16)& 0x0000FFFF);
  return x;
}

我来解释一下这个算法。

该算法基于分治算法。假设有一个8位整数213(二进制的11010101),算法是这样工作的(每次合并两个邻居块):

+-------------------------------+
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |  <- x
|  1 0  |  0 1  |  0 1  |  0 1  |  <- first time merge
|    0 0 1 1    |    0 0 1 0    |  <- second time merge
|        0 0 0 0 0 1 0 1        |  <- third time ( answer = 00000101 = 5)
+-------------------------------+