代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
在Java 8或9中只调用Integer。bitCount。
其他回答
这是一个有助于了解您的微架构的问题。我只是在gcc 4.3.3下用-O3编译的两个变量使用c++内联来计时,以消除函数调用开销,十亿次迭代,保持所有计数的运行总和,以确保编译器不删除任何重要的东西,使用rdtsc计时(精确的时钟周期)。
inline int pop2(unsigned x, unsigned y) { x = x - ((x >> 1) & 0x55555555); y = y - ((y >> 1) & 0x55555555); x = (x & 0x33333333) + ((x >> 2) & 0x33333333); y = (y & 0x33333333) + ((y >> 2) & 0x33333333); x = (x + (x >> 4)) & 0x0F0F0F0F; y = (y + (y >> 4)) & 0x0F0F0F0F; x = x + (x >> 8); y = y + (y >> 8); x = x + (x >> 16); y = y + (y >> 16); return (x+y) & 0x000000FF; }
未经修改的黑客喜悦需要122亿周期。我的并行版本(计算的比特数是它的两倍)的运行周期为13.0千兆周期。在2.4GHz的酷睿双核上,两者总共消耗了10.5秒。在这个时钟频率下,25千兆周期= 10秒多一点,所以我相信我的计时是正确的。
这与指令依赖链有关,这对算法非常不利。通过使用一对64位寄存器,我几乎可以再次将速度提高一倍。事实上,如果我聪明一点,早点加上x+y,我就可以减少一些移位。64位版本做了一些小的调整,结果是相同的,但又增加了一倍的比特数。
对于128位SIMD寄存器,这是另一个因素,SSE指令集通常也有聪明的快捷方式。
没有理由让代码特别透明。该算法界面简单,可在多处在线引用,并能通过全面的单元测试。偶然发现它的程序员甚至可能学到一些东西。这些位操作在机器级别上是非常自然的。
好吧,我决定搁置调整后的64位版本。对于这个sizeof(unsigned long) == 8
inline int pop2(unsigned long x, unsigned long y) { x = x - ((x >> 1) & 0x5555555555555555); y = y - ((y >> 1) & 0x5555555555555555); x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); y = (y & 0x3333333333333333) + ((y >> 2) & 0x3333333333333333); x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0F; y = (y + (y >> 4)) & 0x0F0F0F0F0F0F0F0F; x = x + y; x = x + (x >> 8); x = x + (x >> 16); x = x + (x >> 32); return x & 0xFF; }
这看起来是对的(不过我没有仔细测试)。现在计时结果是10.70亿周期/ 14.1亿周期。后面的数字加起来是1280亿比特,相当于这台机器运行了5.9秒。非并行版本稍微加快了一点,因为我在64位模式下运行,它更喜欢64位寄存器,而不是32位寄存器。
让我们看看这里是否有更多的OOO管道。这有点复杂,所以我实际上测试了一些。每一项单独加起来是64,所有项加起来是256。
inline int pop4(unsigned long x, unsigned long y, unsigned long u, unsigned long v) { enum { m1 = 0x5555555555555555, m2 = 0x3333333333333333, m3 = 0x0F0F0F0F0F0F0F0F, m4 = 0x000000FF000000FF }; x = x - ((x >> 1) & m1); y = y - ((y >> 1) & m1); u = u - ((u >> 1) & m1); v = v - ((v >> 1) & m1); x = (x & m2) + ((x >> 2) & m2); y = (y & m2) + ((y >> 2) & m2); u = (u & m2) + ((u >> 2) & m2); v = (v & m2) + ((v >> 2) & m2); x = x + y; u = u + v; x = (x & m3) + ((x >> 4) & m3); u = (u & m3) + ((u >> 4) & m3); x = x + u; x = x + (x >> 8); x = x + (x >> 16); x = x & m4; x = x + (x >> 32); return x & 0x000001FF; }
我兴奋了一会儿,但结果是gcc在-O3上玩内联的把戏,尽管我在一些测试中没有使用内联关键字。当我让gcc玩把戏时,对pop4()的十亿次调用需要12.56 gigacycles,但我确定它是将参数折叠为常量表达式。更实际的数字似乎是19.6gc,以实现30%的加速。我的测试循环现在看起来像这样,确保每个参数足够不同,以阻止gcc耍花招。
hitime b4 = rdtsc(); for (unsigned long i = 10L * 1000*1000*1000; i < 11L * 1000*1000*1000; ++i) sum += pop4 (i, i^1, ~i, i|1); hitime e4 = rdtsc();
2560亿比特加起来在8.17秒内过去了。根据16位表查找的基准测试,3200万比特的计算结果为1.02秒。不能直接比较,因为另一个工作台没有给出时钟速度,但看起来我已经把64KB表版本的鼻涕打出来了,这首先是L1缓存的悲惨使用。
更新:决定做明显的和创建pop6()通过增加四个重复的行。结果是22.8gc, 3840亿比特在9.5秒内加起来。所以还有20%现在是800毫秒,320亿比特。
我总是在竞争性编程中使用它,它很容易写,而且效率很高:
#include <bits/stdc++.h>
using namespace std;
int countOnes(int n) {
bitset<32> b(n);
return b.count();
}
天真的解决方案
时间复杂度为O(no。n的比特数)
int countSet(unsigned int n)
{
int res=0;
while(n!=0){
res += (n&1);
n >>= 1; // logical right shift, like C unsigned or Java >>>
}
return res;
}
Brian Kerningam的算法
时间复杂度为O(n中设置位的个数)
int countSet(unsigned int n)
{
int res=0;
while(n != 0)
{
n = (n & (n-1));
res++;
}
return res;
}
32位数字的查找表方法-在这种方法中,我们将32位数字分解为4个8位数字的块
时间复杂度为O(1)
static unsigned char table[256]; /* the table size is 256,
the number of values i&0xFF (8 bits) can have */
void initialize() //holds the number of set bits from 0 to 255
{
table[0]=0;
for(unsigned int i=1;i<256;i++)
table[i]=(i&1)+table[i>>1];
}
int countSet(unsigned int n)
{
// 0xff is hexadecimal representation of 8 set bits.
int res=table[n & 0xff];
n=n>>8;
res=res+ table[n & 0xff];
n=n>>8;
res=res+ table[n & 0xff];
n=n>>8;
res=res+ table[n & 0xff];
return res;
}
这是一个可移植的模块(ANSI-C),它可以在任何架构上对每个算法进行基准测试。
你的CPU有9位字节?目前它实现了2个算法,K&R算法和一个字节查找表。查找表的平均速度比K&R算法快3倍。如果有人能想出办法使“黑客的喜悦”算法可移植,请随意添加它。
#ifndef _BITCOUNT_H_
#define _BITCOUNT_H_
/* Return the Hamming Wieght of val, i.e. the number of 'on' bits. */
int bitcount( unsigned int );
/* List of available bitcount algorithms.
* onTheFly: Calculate the bitcount on demand.
*
* lookupTalbe: Uses a small lookup table to determine the bitcount. This
* method is on average 3 times as fast as onTheFly, but incurs a small
* upfront cost to initialize the lookup table on the first call.
*
* strategyCount is just a placeholder.
*/
enum strategy { onTheFly, lookupTable, strategyCount };
/* String represenations of the algorithm names */
extern const char *strategyNames[];
/* Choose which bitcount algorithm to use. */
void setStrategy( enum strategy );
#endif
.
#include <limits.h>
#include "bitcount.h"
/* The number of entries needed in the table is equal to the number of unique
* values a char can represent which is always UCHAR_MAX + 1*/
static unsigned char _bitCountTable[UCHAR_MAX + 1];
static unsigned int _lookupTableInitialized = 0;
static int _defaultBitCount( unsigned int val ) {
int count;
/* Starting with:
* 1100 - 1 == 1011, 1100 & 1011 == 1000
* 1000 - 1 == 0111, 1000 & 0111 == 0000
*/
for ( count = 0; val; ++count )
val &= val - 1;
return count;
}
/* Looks up each byte of the integer in a lookup table.
*
* The first time the function is called it initializes the lookup table.
*/
static int _tableBitCount( unsigned int val ) {
int bCount = 0;
if ( !_lookupTableInitialized ) {
unsigned int i;
for ( i = 0; i != UCHAR_MAX + 1; ++i )
_bitCountTable[i] =
( unsigned char )_defaultBitCount( i );
_lookupTableInitialized = 1;
}
for ( ; val; val >>= CHAR_BIT )
bCount += _bitCountTable[val & UCHAR_MAX];
return bCount;
}
static int ( *_bitcount ) ( unsigned int ) = _defaultBitCount;
const char *strategyNames[] = { "onTheFly", "lookupTable" };
void setStrategy( enum strategy s ) {
switch ( s ) {
case onTheFly:
_bitcount = _defaultBitCount;
break;
case lookupTable:
_bitcount = _tableBitCount;
break;
case strategyCount:
break;
}
}
/* Just a forwarding function which will call whichever version of the
* algorithm has been selected by the client
*/
int bitcount( unsigned int val ) {
return _bitcount( val );
}
#ifdef _BITCOUNT_EXE_
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
/* Use the same sequence of pseudo random numbers to benmark each Hamming
* Weight algorithm.
*/
void benchmark( int reps ) {
clock_t start, stop;
int i, j;
static const int iterations = 1000000;
for ( j = 0; j != strategyCount; ++j ) {
setStrategy( j );
srand( 257 );
start = clock( );
for ( i = 0; i != reps * iterations; ++i )
bitcount( rand( ) );
stop = clock( );
printf
( "\n\t%d psudoe-random integers using %s: %f seconds\n\n",
reps * iterations, strategyNames[j],
( double )( stop - start ) / CLOCKS_PER_SEC );
}
}
int main( void ) {
int option;
while ( 1 ) {
printf( "Menu Options\n"
"\t1.\tPrint the Hamming Weight of an Integer\n"
"\t2.\tBenchmark Hamming Weight implementations\n"
"\t3.\tExit ( or cntl-d )\n\n\t" );
if ( scanf( "%d", &option ) == EOF )
break;
switch ( option ) {
case 1:
printf( "Please enter the integer: " );
if ( scanf( "%d", &option ) != EOF )
printf
( "The Hamming Weight of %d ( 0x%X ) is %d\n\n",
option, option, bitcount( option ) );
break;
case 2:
printf
( "Please select number of reps ( in millions ): " );
if ( scanf( "%d", &option ) != EOF )
benchmark( option );
break;
case 3:
goto EXIT;
break;
default:
printf( "Invalid option\n" );
}
}
EXIT:
printf( "\n" );
return 0;
}
#endif
一个快速的c#解决方案,使用预先计算的字节位计数表,并根据输入大小进行分支。
public static class BitCount
{
public static uint GetSetBitsCount(uint n)
{
var counts = BYTE_BIT_COUNTS;
return n <= 0xff ? counts[n]
: n <= 0xffff ? counts[n & 0xff] + counts[n >> 8]
: n <= 0xffffff ? counts[n & 0xff] + counts[(n >> 8) & 0xff] + counts[(n >> 16) & 0xff]
: counts[n & 0xff] + counts[(n >> 8) & 0xff] + counts[(n >> 16) & 0xff] + counts[(n >> 24) & 0xff];
}
public static readonly uint[] BYTE_BIT_COUNTS =
{
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
}