在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
当前回答
通常避免栈溢出的技术是递归函数,称为蹦床技术,被Java开发人员广泛采用。
然而,对于c#来说,这里有一个小的助手方法,可以将递归函数转换为迭代函数,而不需要改变逻辑或使代码难以理解。c#是一门很好的语言,用它可以做很多神奇的事情。
它的工作原理是用一个辅助方法来包装方法的各个部分。例如下面的递归函数:
int Sum(int index, int[] array)
{
//This is the termination condition
if (int >= array.Length)
//This is the returning value when termination condition is true
return 0;
//This is the recursive call
var sumofrest = Sum(index+1, array);
//This is the work to do with the current item and the
//result of recursive call
return array[index]+sumofrest;
}
变成:
int Sum(int[] ar)
{
return RecursionHelper<int>.CreateSingular(i => i >= ar.Length, i => 0)
.RecursiveCall((i, rv) => i + 1)
.Do((i, rv) => ar[i] + rv)
.Execute(0);
}
其他回答
只是消磨时间……递归函数
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
foo(node->left);
foo(node->right);
}
可转换为
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
stack.push(node->right);
stack.push(node->left);
while(!stack.empty()) {
node1 = stack.pop();
if(node1 == NULL)
continue;
// Do something with node1...
stack.push(node1->right);
stack.push(node1->left);
}
}
努力使你的递归调用尾部递归(递归的最后一个语句是递归调用)。一旦你有了它,将它转换为迭代通常是相当容易的。
一个系统如何接受任何递归函数并使用堆栈执行它的粗略描述:
这是为了在没有细节的情况下展示想法。考虑这个函数,它将打印出图的节点:
function show(node)
0. if isleaf(node):
1. print node.name
2. else:
3. show(node.left)
4. show(node)
5. show(node.right)
例如图表: A - B > C - > show(A)将打印B, A, C
函数调用意味着保存本地状态和延续点,以便返回,然后跳转到要调用的函数。
例如,假设show(A)开始运行。函数调用在第3行。显示(B)的意思 -将项目添加到堆栈,意思是“你需要在第2行继续使用本地变量状态node=A” —到第0行,节点为B。
为了执行代码,系统运行指令。当遇到函数调用时,系统将需要的信息推回到原来的位置,运行函数代码,当函数完成时,弹出关于需要继续执行的位置的信息。
另一个使用堆栈将递归函数转换为迭代函数的简单而完整的示例。
#include <iostream>
#include <stack>
using namespace std;
int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }
struct Par
{
int a, b;
Par() : Par(0, 0) {}
Par(int _a, int _b) : a(_a), b(_b) {}
};
int GCDIter(int a, int b)
{
stack<Par> rcstack;
if (b == 0)
return a;
rcstack.push(Par(b, a % b));
Par p;
while (!rcstack.empty())
{
p = rcstack.top();
rcstack.pop();
if (p.b == 0)
continue;
rcstack.push(Par(p.b, p.a % p.b));
}
return p.a;
}
int main()
{
//cout << GCD(24, 36) << endl;
cout << GCDIter(81, 36) << endl;
cin.get();
return 0;
}
想想那些真正需要堆栈的东西:
如果我们考虑递归的模式为:
if(task can be done directly) {
return result of doing task directly
} else {
split task into two or more parts
solve for each part (possibly by recursing)
return result constructed by combining these solutions
}
例如,经典的河内塔
if(the number of discs to move is 1) {
just move it
} else {
move n-1 discs to the spare peg
move the remaining disc to the target peg
move n-1 discs from the spare peg to the target peg, using the current peg as a spare
}
这可以转化为一个循环工作在一个显式的堆栈,通过重申它为:
place seed task on stack
while stack is not empty
take a task off the stack
if(task can be done directly) {
Do it
} else {
Split task into two or more parts
Place task to consolidate results on stack
Place each task on stack
}
}
对于《河内塔》来说,这就变成了:
stack.push(new Task(size, from, to, spare));
while(! stack.isEmpty()) {
task = stack.pop();
if(task.size() = 1) {
just move it
} else {
stack.push(new Task(task.size() -1, task.spare(), task,to(), task,from()));
stack.push(new Task(1, task.from(), task.to(), task.spare()));
stack.push(new Task(task.size() -1, task.from(), task.spare(), task.to()));
}
}
在如何定义堆栈方面,这里有相当大的灵活性。你可以让你的堆栈成为一个Command对象列表,这些对象可以做一些复杂的事情。或者你可以走相反的方向,让它成为一个简单类型的列表(例如,一个“task”可能是一个int堆栈上的4个元素,而不是一个task堆栈上的一个元素)。
这意味着堆栈的内存在堆中,而不是在Java执行堆栈中,但这可能很有用,因为您可以更好地控制它。