在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
当前回答
通常避免栈溢出的技术是递归函数,称为蹦床技术,被Java开发人员广泛采用。
然而,对于c#来说,这里有一个小的助手方法,可以将递归函数转换为迭代函数,而不需要改变逻辑或使代码难以理解。c#是一门很好的语言,用它可以做很多神奇的事情。
它的工作原理是用一个辅助方法来包装方法的各个部分。例如下面的递归函数:
int Sum(int index, int[] array)
{
//This is the termination condition
if (int >= array.Length)
//This is the returning value when termination condition is true
return 0;
//This is the recursive call
var sumofrest = Sum(index+1, array);
//This is the work to do with the current item and the
//result of recursive call
return array[index]+sumofrest;
}
变成:
int Sum(int[] ar)
{
return RecursionHelper<int>.CreateSingular(i => i >= ar.Length, i => 0)
.RecursiveCall((i, rv) => i + 1)
.Do((i, rv) => ar[i] + rv)
.Execute(0);
}
其他回答
要寻找的一种模式是函数末尾的递归调用(所谓的尾部递归)。这很容易用一段时间来代替。例如,函数foo:
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
foo(node->left);
foo(node->right);
}
以调用foo结束。这可以替换为:
void foo(Node* node)
{
while(node != NULL)
{
// Do something with node...
foo(node->left);
node = node->right;
}
}
这消除了第二次递归调用。
一般来说,通过简单地使用存储变量,可以将递归模拟为迭代。注意,递归和迭代通常是等价的;其中一种几乎总是可以转化为另一种。尾递归函数很容易转化为迭代函数。只需要将累加器变量设置为局部变量,并迭代而不是递归。下面是c++中的一个例子(如果不使用默认参数的话):
// tail-recursive
int factorial (int n, int acc = 1)
{
if (n == 1)
return acc;
else
return factorial(n - 1, acc * n);
}
// iterative
int factorial (int n)
{
int acc = 1;
for (; n > 1; --n)
acc *= n;
return acc;
}
据我所知,我可能在代码中犯了一个错误,但想法是存在的。
有一种将递归遍历转换为迭代器的通用方法,即使用连接多个迭代器提供者的惰性迭代器(返回迭代器的lambda表达式)。请参阅我的将递归遍历转换为迭代器。
堆栈和递归消除文章抓住了将堆栈框架外部化到堆上的思想,但没有提供直接和可重复的转换方法。下面是一个。
在转换为迭代代码时,必须意识到递归调用可能发生在任意深度的代码块中。它不仅是参数,而且是返回到仍然要执行的逻辑的点,以及参与后续条件的变量的状态,这很重要。下面是一种转换为迭代代码的非常简单的方法。
考虑下面的递归代码:
struct tnode
{
tnode(int n) : data(n), left(0), right(0) {}
tnode *left, *right;
int data;
};
void insertnode_recur(tnode *node, int num)
{
if(node->data <= num)
{
if(node->right == NULL)
node->right = new tnode(num);
else
insertnode(node->right, num);
}
else
{
if(node->left == NULL)
node->left = new tnode(num);
else
insertnode(node->left, num);
}
}
迭代代码:
// Identify the stack variables that need to be preserved across stack
// invocations, that is, across iterations and wrap them in an object
struct stackitem
{
stackitem(tnode *t, int n) : node(t), num(n), ra(0) {}
tnode *node; int num;
int ra; //to point of return
};
void insertnode_iter(tnode *node, int num)
{
vector<stackitem> v;
//pushing a stackitem is equivalent to making a recursive call.
v.push_back(stackitem(node, num));
while(v.size())
{
// taking a modifiable reference to the stack item makes prepending
// 'si.' to auto variables in recursive logic suffice
// e.g., instead of num, replace with si.num.
stackitem &si = v.back();
switch(si.ra)
{
// this jump simulates resuming execution after return from recursive
// call
case 1: goto ra1;
case 2: goto ra2;
default: break;
}
if(si.node->data <= si.num)
{
if(si.node->right == NULL)
si.node->right = new tnode(si.num);
else
{
// replace a recursive call with below statements
// (a) save return point,
// (b) push stack item with new stackitem,
// (c) continue statement to make loop pick up and start
// processing new stack item,
// (d) a return point label
// (e) optional semi-colon, if resume point is an end
// of a block.
si.ra=1;
v.push_back(stackitem(si.node->right, si.num));
continue;
ra1: ;
}
}
else
{
if(si.node->left == NULL)
si.node->left = new tnode(si.num);
else
{
si.ra=2;
v.push_back(stackitem(si.node->left, si.num));
continue;
ra2: ;
}
}
v.pop_back();
}
}
请注意,代码的结构仍然保持忠于递归逻辑,并且修改是最小的,从而减少了错误的数量。为了便于比较,我用++和——标记了更改。除了v.push_back之外,大多数新插入的块对于任何转换的迭代逻辑都是通用的
void insertnode_iter(tnode *node, int num)
{
+++++++++++++++++++++++++
vector<stackitem> v;
v.push_back(stackitem(node, num));
while(v.size())
{
stackitem &si = v.back();
switch(si.ra)
{
case 1: goto ra1;
case 2: goto ra2;
default: break;
}
------------------------
if(si.node->data <= si.num)
{
if(si.node->right == NULL)
si.node->right = new tnode(si.num);
else
{
+++++++++++++++++++++++++
si.ra=1;
v.push_back(stackitem(si.node->right, si.num));
continue;
ra1: ;
-------------------------
}
}
else
{
if(si.node->left == NULL)
si.node->left = new tnode(si.num);
else
{
+++++++++++++++++++++++++
si.ra=2;
v.push_back(stackitem(si.node->left, si.num));
continue;
ra2: ;
-------------------------
}
}
+++++++++++++++++++++++++
v.pop_back();
}
-------------------------
}
另一个使用堆栈将递归函数转换为迭代函数的简单而完整的示例。
#include <iostream>
#include <stack>
using namespace std;
int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }
struct Par
{
int a, b;
Par() : Par(0, 0) {}
Par(int _a, int _b) : a(_a), b(_b) {}
};
int GCDIter(int a, int b)
{
stack<Par> rcstack;
if (b == 0)
return a;
rcstack.push(Par(b, a % b));
Par p;
while (!rcstack.empty())
{
p = rcstack.top();
rcstack.pop();
if (p.b == 0)
continue;
rcstack.push(Par(p.b, p.a % p.b));
}
return p.a;
}
int main()
{
//cout << GCD(24, 36) << endl;
cout << GCDIter(81, 36) << endl;
cin.get();
return 0;
}