在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。

所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。

有一般的规则吗? 有“模式”吗?


当前回答

只是消磨时间……递归函数

void foo(Node* node)
{
    if(node == NULL)
       return;
    // Do something with node...
    foo(node->left);
    foo(node->right);
}

可转换为

void foo(Node* node)
{
    if(node == NULL)
       return;

    // Do something with node...

    stack.push(node->right);
    stack.push(node->left);

    while(!stack.empty()) {
         node1 = stack.pop();
         if(node1 == NULL)
            continue;
         // Do something with node1...
         stack.push(node1->right);             
         stack.push(node1->left);
    }

}

其他回答

一般来说,通过简单地使用存储变量,可以将递归模拟为迭代。注意,递归和迭代通常是等价的;其中一种几乎总是可以转化为另一种。尾递归函数很容易转化为迭代函数。只需要将累加器变量设置为局部变量,并迭代而不是递归。下面是c++中的一个例子(如果不使用默认参数的话):

// tail-recursive
int factorial (int n, int acc = 1)
{
  if (n == 1)
    return acc;
  else
    return factorial(n - 1, acc * n);
}

// iterative
int factorial (int n)
{
  int acc = 1;
  for (; n > 1; --n)
    acc *= n;
  return acc;
}

据我所知,我可能在代码中犯了一个错误,但想法是存在的。

This is an old question but I want to add a different aspect as a solution. I'm currently working on a project in which I used the flood fill algorithm using C#. Normally, I implemented this algorithm with recursion at first, but obviously, it caused a stack overflow. After that, I changed the method from recursion to iteration. Yes, It worked and I was no longer getting the stack overflow error. But this time, since I applied the flood fill method to very large structures, the program was going into an infinite loop. For this reason, it occurred to me that the function may have re-entered the places it had already visited. As a definitive solution to this, I decided to use a dictionary for visited points. If that node(x,y) has already been added to the stack structure for the first time, that node(x,y) will be saved in the dictionary as the key. Even if the same node is tried to be added again later, it won't be added to the stack structure because the node is already in the dictionary. Let's see on pseudo-code:

startNode = pos(x,y)

Stack stack = new Stack();

Dictionary visited<pos, bool> = new Dictionary();

stack.Push(startNode);

while(stack.count != 0){
    currentNode = stack.Pop();
    if "check currentNode if not available"
        continue;
    if "check if already handled"
        continue;
    else if "run if it must be wanted thing should be handled"      
        // make something with pos currentNode.X and currentNode.X  
        
        // then add its neighbor nodes to the stack to iterate
        // but at first check if it has already been visited.
        
        if(!visited.Contains(pos(x-1,y)))
            visited[pos(x-1,y)] = true;
            stack.Push(pos(x-1,y));
        if(!visited.Contains(pos(x+1,y)))
            ...
        if(!visited.Contains(pos(x,y+1)))
            ...
        if(!visited.Contains(pos(x,y-1)))
            ...
}

似乎没有人指出递归函数在主体中调用自己超过一次的位置,并处理返回递归中的特定点(即不是原始递归)。据说每一个递归都可以转化为迭代,所以这似乎是可能的。

我刚刚想出了一个如何做到这一点的c#示例。假设您有以下递归函数,它的作用类似于poststorder遍历,AbcTreeNode是一个带有指针a、b、c的3元树。

public static void AbcRecursiveTraversal(this AbcTreeNode x, List<int> list) {
        if (x != null) {
            AbcRecursiveTraversal(x.a, list);
            AbcRecursiveTraversal(x.b, list);
            AbcRecursiveTraversal(x.c, list);
            list.Add(x.key);//finally visit root
        }
}

迭代解:

        int? address = null;
        AbcTreeNode x = null;
        x = root;
        address = A;
        stack.Push(x);
        stack.Push(null)    

        while (stack.Count > 0) {
            bool @return = x == null;

            if (@return == false) {

                switch (address) {
                    case A://   
                        stack.Push(x);
                        stack.Push(B);
                        x = x.a;
                        address = A;
                        break;
                    case B:
                        stack.Push(x);
                        stack.Push(C);
                        x = x.b;
                        address = A;
                        break;
                    case C:
                        stack.Push(x);
                        stack.Push(null);
                        x = x.c;
                        address = A;
                        break;
                    case null:
                        list_iterative.Add(x.key);
                        @return = true;
                        break;
                }

            }


            if (@return == true) {
                address = (int?)stack.Pop();
                x = (AbcTreeNode)stack.Pop();
            }


        }

通常避免栈溢出的技术是递归函数,称为蹦床技术,被Java开发人员广泛采用。

然而,对于c#来说,这里有一个小的助手方法,可以将递归函数转换为迭代函数,而不需要改变逻辑或使代码难以理解。c#是一门很好的语言,用它可以做很多神奇的事情。

它的工作原理是用一个辅助方法来包装方法的各个部分。例如下面的递归函数:

int Sum(int index, int[] array)
{
 //This is the termination condition
 if (int >= array.Length)
 //This is the returning value when termination condition is true
 return 0;

//This is the recursive call
 var sumofrest = Sum(index+1, array);

//This is the work to do with the current item and the
 //result of recursive call
 return array[index]+sumofrest;
}

变成:

int Sum(int[] ar)
{
 return RecursionHelper<int>.CreateSingular(i => i >= ar.Length, i => 0)
 .RecursiveCall((i, rv) => i + 1)
 .Do((i, rv) => ar[i] + rv)
 .Execute(0);
}

Recursion is nothing but the process of calling of one function from the other only this process is done by calling of a function by itself. As we know when one function calls the other function the first function saves its state(its variables) and then passes the control to the called function. The called function can be called by using the same name of variables ex fun1(a) can call fun2(a). When we do recursive call nothing new happens. One function calls itself by passing the same type and similar in name variables(but obviously the values stored in variables are different,only the name remains same.)to itself. But before every call the function saves its state and this process of saving continues. The SAVING IS DONE ON A STACK.

现在堆栈开始发挥作用了。

因此,如果您编写了一个迭代程序,并每次将状态保存在堆栈上,然后在需要时从堆栈中弹出值,那么您已经成功地将递归程序转换为迭代程序!

证明是简单而分析的。

在递归中,计算机维护堆栈,而在迭代版本中,您将不得不手动维护堆栈。

仔细想想,只需将深度优先搜索(在图上)递归程序转换为dfs迭代程序。

祝你一切顺利!