在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
当前回答
另一个使用堆栈将递归函数转换为迭代函数的简单而完整的示例。
#include <iostream>
#include <stack>
using namespace std;
int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }
struct Par
{
int a, b;
Par() : Par(0, 0) {}
Par(int _a, int _b) : a(_a), b(_b) {}
};
int GCDIter(int a, int b)
{
stack<Par> rcstack;
if (b == 0)
return a;
rcstack.push(Par(b, a % b));
Par p;
while (!rcstack.empty())
{
p = rcstack.top();
rcstack.pop();
if (p.b == 0)
continue;
rcstack.push(Par(p.b, p.a % p.b));
}
return p.a;
}
int main()
{
//cout << GCD(24, 36) << endl;
cout << GCDIter(81, 36) << endl;
cin.get();
return 0;
}
其他回答
另一个使用堆栈将递归函数转换为迭代函数的简单而完整的示例。
#include <iostream>
#include <stack>
using namespace std;
int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }
struct Par
{
int a, b;
Par() : Par(0, 0) {}
Par(int _a, int _b) : a(_a), b(_b) {}
};
int GCDIter(int a, int b)
{
stack<Par> rcstack;
if (b == 0)
return a;
rcstack.push(Par(b, a % b));
Par p;
while (!rcstack.empty())
{
p = rcstack.top();
rcstack.pop();
if (p.b == 0)
continue;
rcstack.push(Par(p.b, p.a % p.b));
}
return p.a;
}
int main()
{
//cout << GCD(24, 36) << endl;
cout << GCDIter(81, 36) << endl;
cin.get();
return 0;
}
一个系统如何接受任何递归函数并使用堆栈执行它的粗略描述:
这是为了在没有细节的情况下展示想法。考虑这个函数,它将打印出图的节点:
function show(node)
0. if isleaf(node):
1. print node.name
2. else:
3. show(node.left)
4. show(node)
5. show(node.right)
例如图表: A - B > C - > show(A)将打印B, A, C
函数调用意味着保存本地状态和延续点,以便返回,然后跳转到要调用的函数。
例如,假设show(A)开始运行。函数调用在第3行。显示(B)的意思 -将项目添加到堆栈,意思是“你需要在第2行继续使用本地变量状态node=A” —到第0行,节点为B。
为了执行代码,系统运行指令。当遇到函数调用时,系统将需要的信息推回到原来的位置,运行函数代码,当函数完成时,弹出关于需要继续执行的位置的信息。
实际上,最常见的方法是保留自己的堆栈。下面是一个C语言的递归快速排序函数:
void quicksort(int* array, int left, int right)
{
if(left >= right)
return;
int index = partition(array, left, right);
quicksort(array, left, index - 1);
quicksort(array, index + 1, right);
}
以下是我们如何通过保持自己的堆栈来实现迭代:
void quicksort(int *array, int left, int right)
{
int stack[1024];
int i=0;
stack[i++] = left;
stack[i++] = right;
while (i > 0)
{
right = stack[--i];
left = stack[--i];
if (left >= right)
continue;
int index = partition(array, left, right);
stack[i++] = left;
stack[i++] = index - 1;
stack[i++] = index + 1;
stack[i++] = right;
}
}
显然,这个例子没有检查堆栈边界……实际上,你可以根据最坏的情况来确定堆栈的大小。但你懂的。
一般来说,通过简单地使用存储变量,可以将递归模拟为迭代。注意,递归和迭代通常是等价的;其中一种几乎总是可以转化为另一种。尾递归函数很容易转化为迭代函数。只需要将累加器变量设置为局部变量,并迭代而不是递归。下面是c++中的一个例子(如果不使用默认参数的话):
// tail-recursive
int factorial (int n, int acc = 1)
{
if (n == 1)
return acc;
else
return factorial(n - 1, acc * n);
}
// iterative
int factorial (int n)
{
int acc = 1;
for (; n > 1; --n)
acc *= n;
return acc;
}
据我所知,我可能在代码中犯了一个错误,但想法是存在的。
要寻找的一种模式是函数末尾的递归调用(所谓的尾部递归)。这很容易用一段时间来代替。例如,函数foo:
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
foo(node->left);
foo(node->right);
}
以调用foo结束。这可以替换为:
void foo(Node* node)
{
while(node != NULL)
{
// Do something with node...
foo(node->left);
node = node->right;
}
}
这消除了第二次递归调用。