我在学校里很难理解递归。每当教授谈到它的时候,我似乎都懂了,但当我自己尝试的时候,它完全震撼了我的大脑。
我整晚都在尝试着解决《Towers of Hanoi》这款游戏,结果完全出乎我的意料。我的课本只有大约30页关于递归的内容,所以它不是很有用。有人知道哪些书籍或资源可以帮助澄清这个话题吗?
我在学校里很难理解递归。每当教授谈到它的时候,我似乎都懂了,但当我自己尝试的时候,它完全震撼了我的大脑。
我整晚都在尝试着解决《Towers of Hanoi》这款游戏,结果完全出乎我的意料。我的课本只有大约30页关于递归的内容,所以它不是很有用。有人知道哪些书籍或资源可以帮助澄清这个话题吗?
当前回答
构建递归函数的真正数学方法如下:
1:假设你有一个函数对f(n-1)是正确的,构造f使f(n)是正确的。 2:构造f,使得f(1)是正确的。
This is how you can prove that the function is correct, mathematically, and it's called Induction. It is equivalent to have different base cases, or more complicated functions on multiple variables). It is also equivalent to imagine that f(x) is correct for all x Now for a "simple" example. Build a function that can determine if it is possible to have a coin combination of 5 cents and 7 cents to make x cents. For example, it's possible to have 17 cents by 2x5 + 1x7, but impossible to have 16 cents. Now imagine you have a function that tells you if it's possible to create x cents, as long as x < n. Call this function can_create_coins_small. It should be fairly simple to imagine how to make the function for n. Now build your function: bool can_create_coins(int n) { if (n >= 7 && can_create_coins_small(n-7)) return true; else if (n >= 5 && can_create_coins_small(n-5)) return true; else return false; } The trick here is to realize that the fact that can_create_coins works for n, means that you can substitute can_create_coins for can_create_coins_small, giving: bool can_create_coins(int n) { if (n >= 7 && can_create_coins(n-7)) return true; else if (n >= 5 && can_create_coins(n-5)) return true; else return false; } One last thing to do is to have a base case to stop infinite recursion. Note that if you are trying to create 0 cents, then that is possible by having no coins. Adding this condition gives: bool can_create_coins(int n) { if (n == 0) return true; else if (n >= 7 && can_create_coins(n-7)) return true; else if (n >= 5 && can_create_coins(n-5)) return true; else return false; } It can be proven that this function will always return, using a method called infinite descent, but that isn't necessary here. You can imagine that f(n) only calls lower values of n, and will always eventually reach 0. To use this information to solve your Tower of Hanoi problem, I think the trick is to assume you have a function to move n-1 tablets from a to b (for any a/b), trying to move n tables from a to b.
其他回答
当使用递归解时,我总是尝试:
首先建立基本情况,即。 当n = 1的阶乘 试着想出一个一般的规则 对于其他情况
还有不同类型的递归解,分而治之的方法对分形和其他方法很有用。
如果你能先解决一些简单的问题,只是为了掌握窍门,这也会有帮助。一些例子是求解阶乘和生成第n个斐波那契数。
作为参考,我强烈推荐Robert Sedgewick的算法。
希望这能有所帮助。祝你好运。
这与其说是一个问题,不如说是一个抱怨。关于递归你有更具体的问题吗?就像乘法一样,人们不会写很多关于它的东西。
说到乘法,想想这个。
问题:
* b是什么?
答:
如果b = 1,就是a。 否则就是a+a*(b-1)
* (b - 1)是什么?请参考上面的问题来解决这个问题。
http://javabat.com是一个有趣而令人兴奋的练习递归的地方。他们的例子开始时相当简单,然后逐步扩展(如果你想这么做的话)。注意:他们的方法是在实践中学习。这是我写的一个递归函数,用来替换for循环。
for循环:
public printBar(length)
{
String holder = "";
for (int index = 0; i < length; i++)
{
holder += "*"
}
return holder;
}
这是做同样事情的递归。(请注意,我们重载了第一个方法,以确保它像上面那样使用)。我们还有另一种方法来维护索引(类似于上面的for语句)。递归函数必须维护自己的索引。
public String printBar(int Length) // Method, to call the recursive function
{
printBar(length, 0);
}
public String printBar(int length, int index) //Overloaded recursive method
{
// To get a better idea of how this works without a for loop
// you can also replace this if/else with the for loop and
// operationally, it should do the same thing.
if (index >= length)
return "";
else
return "*" + printBar(length, index + 1); // Make recursive call
}
简而言之,递归是一种编写更少代码的好方法。在后面的printBar中,请注意我们有一个if语句。如果我们的条件已经达到,我们将退出递归并返回到前一个方法,该方法返回到前一个方法,等等。如果我发送一个printBar(8),我得到********。我希望通过一个简单函数的例子,它做的事情与for循环相同,这可能会有所帮助。不过,您可以在Java Bat中进行更多的练习。
构建递归函数的真正数学方法如下:
1:假设你有一个函数对f(n-1)是正确的,构造f使f(n)是正确的。 2:构造f,使得f(1)是正确的。
This is how you can prove that the function is correct, mathematically, and it's called Induction. It is equivalent to have different base cases, or more complicated functions on multiple variables). It is also equivalent to imagine that f(x) is correct for all x Now for a "simple" example. Build a function that can determine if it is possible to have a coin combination of 5 cents and 7 cents to make x cents. For example, it's possible to have 17 cents by 2x5 + 1x7, but impossible to have 16 cents. Now imagine you have a function that tells you if it's possible to create x cents, as long as x < n. Call this function can_create_coins_small. It should be fairly simple to imagine how to make the function for n. Now build your function: bool can_create_coins(int n) { if (n >= 7 && can_create_coins_small(n-7)) return true; else if (n >= 5 && can_create_coins_small(n-5)) return true; else return false; } The trick here is to realize that the fact that can_create_coins works for n, means that you can substitute can_create_coins for can_create_coins_small, giving: bool can_create_coins(int n) { if (n >= 7 && can_create_coins(n-7)) return true; else if (n >= 5 && can_create_coins(n-5)) return true; else return false; } One last thing to do is to have a base case to stop infinite recursion. Note that if you are trying to create 0 cents, then that is possible by having no coins. Adding this condition gives: bool can_create_coins(int n) { if (n == 0) return true; else if (n >= 7 && can_create_coins(n-7)) return true; else if (n >= 5 && can_create_coins(n-5)) return true; else return false; } It can be proven that this function will always return, using a method called infinite descent, but that isn't necessary here. You can imagine that f(n) only calls lower values of n, and will always eventually reach 0. To use this information to solve your Tower of Hanoi problem, I think the trick is to assume you have a function to move n-1 tablets from a to b (for any a/b), trying to move n tables from a to b.
递归函数只是一个函数,它可以根据需要多次调用自己。如果您需要多次处理某件事,但不确定实际需要多少次,那么它就很有用。在某种程度上,你可以把递归函数看作是一种循环。然而,就像循环一样,您需要指定中断流程的条件,否则它将变得无限。