我试图写一个c++程序,从用户获取以下输入来构造矩形(2和5之间):高度,宽度,x-pos, y-pos。所有这些矩形都平行于x轴和y轴,也就是说它们所有边的斜率都是0或无穷大。
我试图实现这个问题中提到的东西,但我没有太多的运气。
我目前的实现如下:
// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2
// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2];
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];
int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;
然而,我不太确定(a)我是否已经正确地实现了我链接的算法,或者如果我确实如何解释这一点?
有什么建议吗?
在问题中,你链接到矩形旋转角度任意时的数学。然而,如果我理解了问题中关于角度的部分,我就会理解为所有的矩形都是相互垂直的。
一般已知重叠面积的公式为:
举个例子:
1 2 3 4 5 6
1 +---+---+
| |
2 + A +---+---+
| | B |
3 + + +---+---+
| | | | |
4 +---+---+---+---+ +
| |
5 + C +
| |
6 +---+---+
1)收集所有的x坐标(包括左边和右边)到一个列表中,然后排序并删除重复的
1 3 4 5 6
2)收集所有的y坐标(包括顶部和底部)到一个列表中,然后排序并删除重复的
1 2 3 4 6
3)通过唯一x坐标之间的间隙数量*唯一y坐标之间的间隙数量创建一个2D数组。
4 * 4
4)将所有矩形绘制到这个网格中,增加每个单元格的计数:
1 3 4 5 6
1 +---+
| 1 | 0 0 0
2 +---+---+---+
| 1 | 1 | 1 | 0
3 +---+---+---+---+
| 1 | 1 | 2 | 1 |
4 +---+---+---+---+
0 0 | 1 | 1 |
6 +---+---+
5)当你绘制矩形时,很容易截取重叠部分。
最简单的方法是
/**
* Check if two rectangles collide
* x_1, y_1, width_1, and height_1 define the boundaries of the first rectangle
* x_2, y_2, width_2, and height_2 define the boundaries of the second rectangle
*/
boolean rectangle_collision(float x_1, float y_1, float width_1, float height_1, float x_2, float y_2, float width_2, float height_2)
{
return !(x_1 > x_2+width_2 || x_1+width_1 < x_2 || y_1 > y_2+height_2 || y_1+height_1 < y_2);
}
首先要记住在计算机中坐标系统是颠倒的。x轴与数学中的相同,但y轴向下增大,向上减小。
如果矩形是从中心画的。
如果x1坐标大于x2加上它的一半宽。然后这意味着他们会互相接触。用同样的方法向下+一半高。它会碰撞的。
struct Rect
{
Rect(int x1, int x2, int y1, int y2)
: x1(x1), x2(x2), y1(y1), y2(y2)
{
assert(x1 < x2);
assert(y1 < y2);
}
int x1, x2, y1, y2;
};
//some area of the r1 overlaps r2
bool overlap(const Rect &r1, const Rect &r2)
{
return r1.x1 < r2.x2 && r2.x1 < r1.x2 &&
r1.y1 < r2.y2 && r2.x1 < r1.y2;
}
//either the rectangles overlap or the edges touch
bool touch(const Rect &r1, const Rect &r2)
{
return r1.x1 <= r2.x2 && r2.x1 <= r1.x2 &&
r1.y1 <= r2.y2 && r2.x1 <= r1.y2;
}