我试图写一个c++程序,从用户获取以下输入来构造矩形(2和5之间):高度,宽度,x-pos, y-pos。所有这些矩形都平行于x轴和y轴,也就是说它们所有边的斜率都是0或无穷大。

我试图实现这个问题中提到的东西,但我没有太多的运气。

我目前的实现如下:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2]; 
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;  

然而,我不太确定(a)我是否已经正确地实现了我链接的算法,或者如果我确实如何解释这一点?

有什么建议吗?


当前回答

struct rect
{
    int x;
    int y;
    int width;
    int height;
};

bool valueInRange(int value, int min, int max)
{ return (value >= min) && (value <= max); }

bool rectOverlap(rect A, rect B)
{
    bool xOverlap = valueInRange(A.x, B.x, B.x + B.width) ||
                    valueInRange(B.x, A.x, A.x + A.width);

    bool yOverlap = valueInRange(A.y, B.y, B.y + B.height) ||
                    valueInRange(B.y, A.y, A.y + A.height);

    return xOverlap && yOverlap;
}

其他回答

对于那些使用中心点和一半大小的矩形数据的人,而不是典型的x,y,w,h或x0,y0,x1,x1,下面是你可以这样做:

#include <cmath> // for fabsf(float)

struct Rectangle
{
    float centerX, centerY, halfWidth, halfHeight;
};

bool isRectangleOverlapping(const Rectangle &a, const Rectangle &b)
{
    return (fabsf(a.centerX - b.centerX) <= (a.halfWidth + b.halfWidth)) &&
           (fabsf(a.centerY - b.centerY) <= (a.halfHeight + b.halfHeight)); 
}

问你自己一个相反的问题:我如何确定两个矩形是否完全不相交?显然,矩形a完全在矩形B的左边不相交。如果A完全在右边。同样,如果A完全高于B或完全低于B,在任何其他情况下,A和B相交。

以下内容可能有bug,但我对算法相当有信心:

struct Rectangle { int x; int y; int width; int height; };

bool is_left_of(Rectangle const & a, Rectangle const & b) {
   if (a.x + a.width <= b.x) return true;
   return false;
}
bool is_right_of(Rectangle const & a, Rectangle const & b) {
   return is_left_of(b, a);
}

bool not_intersect( Rectangle const & a, Rectangle const & b) {
   if (is_left_of(a, b)) return true;
   if (is_right_of(a, b)) return true;
   // Do the same for top/bottom...
 }

bool intersect(Rectangle const & a, Rectangle const & b) {
  return !not_intersect(a, b);
}
struct point { int x, y; };

struct rect { point tl, br; }; // top left and bottom right points

// return true if rectangles overlap
bool overlap(const rect &a, const rect &b)
{
    return a.tl.x <= b.br.x && a.br.x >= b.tl.x && 
           a.tl.y >= b.br.y && a.br.y <= b.tl.y;
}

在问题中,你链接到矩形旋转角度任意时的数学。然而,如果我理解了问题中关于角度的部分,我就会理解为所有的矩形都是相互垂直的。

一般已知重叠面积的公式为:

举个例子:

   1   2   3   4   5   6

1  +---+---+
   |       |   
2  +   A   +---+---+
   |       | B     |
3  +       +   +---+---+
   |       |   |   |   |
4  +---+---+---+---+   +
               |       |
5              +   C   +
               |       |
6              +---+---+

1)收集所有的x坐标(包括左边和右边)到一个列表中,然后排序并删除重复的

1 3 4 5 6

2)收集所有的y坐标(包括顶部和底部)到一个列表中,然后排序并删除重复的

1 2 3 4 6

3)通过唯一x坐标之间的间隙数量*唯一y坐标之间的间隙数量创建一个2D数组。

4 * 4

4)将所有矩形绘制到这个网格中,增加每个单元格的计数:

   1   3   4   5   6

1  +---+
   | 1 | 0   0   0
2  +---+---+---+
   | 1 | 1 | 1 | 0
3  +---+---+---+---+
   | 1 | 1 | 2 | 1 |
4  +---+---+---+---+
     0   0 | 1 | 1 |
6          +---+---+

5)当你绘制矩形时,很容易截取重叠部分。

我有一个很简单的解决办法

设x1, y1x2,y2,l1,b1,l2分别为它们的坐标和长、宽

考虑条件((x2 现在,这两个矩形重叠的唯一方式是,如果点(x1,y1)的对角线在另一个矩形内或者类似地,点(x2,y2)的对角线在另一个矩形内。这正是上面的条件所暗示的。