我试图写一个c++程序,从用户获取以下输入来构造矩形(2和5之间):高度,宽度,x-pos, y-pos。所有这些矩形都平行于x轴和y轴,也就是说它们所有边的斜率都是0或无穷大。

我试图实现这个问题中提到的东西,但我没有太多的运气。

我目前的实现如下:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2]; 
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;  

然而,我不太确定(a)我是否已经正确地实现了我链接的算法,或者如果我确实如何解释这一点?

有什么建议吗?


当前回答

struct rect
{
    int x;
    int y;
    int width;
    int height;
};

bool valueInRange(int value, int min, int max)
{ return (value >= min) && (value <= max); }

bool rectOverlap(rect A, rect B)
{
    bool xOverlap = valueInRange(A.x, B.x, B.x + B.width) ||
                    valueInRange(B.x, A.x, A.x + A.width);

    bool yOverlap = valueInRange(A.y, B.y, B.y + B.height) ||
                    valueInRange(B.y, A.y, A.y + A.height);

    return xOverlap && yOverlap;
}

其他回答

问你自己一个相反的问题:我如何确定两个矩形是否完全不相交?显然,矩形a完全在矩形B的左边不相交。如果A完全在右边。同样,如果A完全高于B或完全低于B,在任何其他情况下,A和B相交。

以下内容可能有bug,但我对算法相当有信心:

struct Rectangle { int x; int y; int width; int height; };

bool is_left_of(Rectangle const & a, Rectangle const & b) {
   if (a.x + a.width <= b.x) return true;
   return false;
}
bool is_right_of(Rectangle const & a, Rectangle const & b) {
   return is_left_of(b, a);
}

bool not_intersect( Rectangle const & a, Rectangle const & b) {
   if (is_left_of(a, b)) return true;
   if (is_right_of(a, b)) return true;
   // Do the same for top/bottom...
 }

bool intersect(Rectangle const & a, Rectangle const & b) {
  return !not_intersect(a, b);
}
if (RectA.Left < RectB.Right && RectA.Right > RectB.Left &&
     RectA.Top > RectB.Bottom && RectA.Bottom < RectB.Top ) 

或者用笛卡尔坐标

(X1是左坐标,X2是右坐标,从左到右递增,Y1是上坐标,Y2是下坐标,从下到上递增——如果这不是你的坐标系统(例如,大多数计算机的Y方向是相反的),交换下面的比较)……

if (RectA.X1 < RectB.X2 && RectA.X2 > RectB.X1 &&
    RectA.Y1 > RectB.Y2 && RectA.Y2 < RectB.Y1) 

假设你有矩形A和矩形B。 反证法是证明。四个条件中的任何一个都保证不存在重叠:

Cond1。如果A的左边在B的右边的右边, -那么A完全在B的右边 Cond2。如果A的右边在B的左边的左边, -那么A完全在B的左边 Cond3。如果A的上边在B的下边之下, -那么A完全低于B Cond4。如果A的下边在B的上边上面, -那么A完全高于B

不重叠的条件是

NON-Overlap => Cond1 Or Cond2 Or Cond3 Or Cond4

因此,重叠的充分条件是相反的。

Overlap => NOT (Cond1 Or Cond2 Or Cond3 Or Cond4)

德摩根定律说 不是(A或B或C或D)和不是A不是B不是C不是D是一样的 所以利用德·摩根,我们有

Not Cond1 And Not Cond2 And Not Cond3 And Not Cond4

这相当于:

A的左边到B的右边的左边,[RectA。左< RectB。正确的), A的右边到B的左边的右边,[RectA。对,>,RectB。左), A的顶部高于B的底部。Top > RectB。底), A的底部在B的顶部以下。底部< RectB。前)

Note 1: It is fairly obvious this same principle can be extended to any number of dimensions. Note 2: It should also be fairly obvious to count overlaps of just one pixel, change the < and/or the > on that boundary to a <= or a >=. Note 3: This answer, when utilizing Cartesian coordinates (X, Y) is based on standard algebraic Cartesian coordinates (x increases left to right, and Y increases bottom to top). Obviously, where a computer system might mechanize screen coordinates differently, (e.g., increasing Y from top to bottom, or X From right to left), the syntax will need to be adjusted accordingly/

struct rect
{
    int x;
    int y;
    int width;
    int height;
};

bool valueInRange(int value, int min, int max)
{ return (value >= min) && (value <= max); }

bool rectOverlap(rect A, rect B)
{
    bool xOverlap = valueInRange(A.x, B.x, B.x + B.width) ||
                    valueInRange(B.x, A.x, A.x + A.width);

    bool yOverlap = valueInRange(A.y, B.y, B.y + B.height) ||
                    valueInRange(B.y, A.y, A.y + A.height);

    return xOverlap && yOverlap;
}

不要认为坐标表示像素的位置。把它们想象成像素之间。这样,2x2矩形的面积应该是4,而不是9。

bool bOverlap = !((A.Left >= B.Right || B.Left >= A.Right)
               && (A.Bottom >= B.Top || B.Bottom >= A.Top));

设这两个矩形是矩形A和矩形b,设它们的中心为A1和B1 (A1和B1的坐标很容易求出来),设高为Ha和Hb,宽为Wa和Wb,设dx为A1和B1之间的宽度(x), dy为A1和B1之间的高度(y)。

现在我们可以说我们可以说A和B重叠,当

if(!(dx > Wa+Wb)||!(dy > Ha+Hb)) returns true